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The frontier between the classical and quantum worlds can be approached in one of two
ways: from the top down or the bottom up. The top-down approach entails starting with an
essentially classical variable (e.g. the flux in a superconducting loop, the charge on a small
superconducting island or the magnetization of a single-domain magnetic particle) and squeezing
down the size of the system (thereby increasing the energy-level separations) until the variable
begins to behave quantum mechanically. Most of the chapters in this book involve this approach
in some form or another. The alternative, bottom-up approach begins with microscopic quantum
objects (like individual ions or spins) and groups them together into somewhat more complex
objects in an attempt to see when and how quantum behavior crosses over to classical.

Magnetic molecules, the subject of this chapter, fall into this latter category. They are the
agglomeration of a handful of magnetic ions, whose spins are so strongly bound together by the
exchange interaction that at low temperatures they act as a single macrospin. In many ways they
behave like classical magnets in that they exhibit magnetic hysteresis at sufficiently low
temperature. At the same time, these hysteresis loops show unmistakable evidence of quantum
tunneling in the form of steps at regular intervals of magnetic field, as will be discussed in detail
below. This dual behavior indicates that these magnets straddle the fence between the quantum
and classical worlds, and not only because they are mesoscopic in size, containing only a handful
of constituent objects. Notably, molecular magnets can relax via a hybrid process that mixes
quantum tunneling with thermal relaxation. This result is something of a surprise since much of
the original (semiclassical) theoretical work on tunneling in macroscopic systems predicted that
as temperature is raised there should be a crossover between purely quantum relaxation and
purely thermal (over-barrier) relaxation. At temperatures well above the so-called crossover
temperature cT , the system is expected to relax only by thermal activation [1-3]. In many ways
the molecular magnets, in which the spin is of order 10, are fairly well described by the
semiclassical theories. However, the finite size of the spin allows the observation of the hybrid
thermal-quantum process illustrated in Fig. 1. Thus, tunneling effects can be observed in the
molecular magnets at temperatures well into the regime in which semiclassical theories would
predict purely thermal dynamics.

In some respects, the study of quantum phenomena in magnetic particles and molecules is
richer than in most other systems of current interest. In particular, tunneling in magnetic systems
can be produced by a variety of mechanisms that can be distinguished from one another by
selection rules associated with each mechanism. In most systems it is a rather trivial question to
ask, “What causes tunneling?” In fact, many physicists, when first asked this question, rightly
react as if they had been asked, “Why are there physical laws?” This is because, for most systems,
tunneling follows in a straightforward manner from the basic laws of quantum mechanics. These

systems, which I will call particle-like, have Hamiltonians of the form 
2

2 ( )p
M V x= +H . The

dynamical variable here, x, could be a Cartesian coordinate, e.g. the position of the center of mass
of a particle, or it could be a coordinate in more abstract space, e.g. the flux in a SQUID. The
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potential in cases of interest has at least one metastable minimum, p is momentum conjugate to x
(e.g. the charge difference across the Josephson junction(s) of a SQUID) and M an effective
“mass”. The “cause” of tunneling, then, is simply that x is not a conserved quantity because x and
p do not commute. That is, kinetic energy lies at the root of tunneling. The only way to “turn off”
tunneling is to take M →∞ . But, in doing so, the density of levels becomes quasicontinuous and
the system becomes classical. Therefore, a quantum system with a particle-like Hamiltonian must
have tunneling.

In contrast,* spin systems have no explicit kinetic degrees of freedom. The simplest
Hamiltonian for a spin with easy-axis anisotropy takes the form

2
z B z zDS g S Hµ ′= − − +H H , (1)

where the second term represents the Zeeman coupling between the spin and a magnetic field and
H’ contains all terms that do not commute with Sz. Now, unlike in the particle-like case, it is
possible for a spin to remain quantum (having well-separated energy levels) and have 0′ →H .
In this limit, Sz is a conserved quantity and no transitions between eigenstates of Sz are allowed:
Tunneling can be turned off without the spin becoming classical. So, it is meaningful to ask here
“What causes tunneling?” ′H  could include a transverse magnetic field or a transverse
anisotropy or, perhaps, something more exotic. Because different mechanisms have different
symmetries, it is possible to determine the dominant tunneling mechanisms by looking for
tunneling selection rules associated with the symmetry. This will be discussed in more detail later
in this chapter.

I.A. Macroscopic Quantum Tunneling in Magnetic Systems

The field of molecular magnetism has grown immensely in the last few years and it would be
impossible to adequately review every facet of it in this chapter. Instead I will focus primarily on
experimental results for the most studied of the molecular magnets, Mn12–Acetate (from hereon
called simply Mn12). In Section II I will review the work done at the City College of New York
(in collaboration with researchers at the University of Barcelona and at Xerox Corporation) that
became the first unambiguous evidence for resonant magnetization tunneling in magnetic systems
[4-7]. (The work of other groups is reviewed in [8, 9].) I will show how the data can be explained
with a simple spin Hamiltonian, which has now been confirmed and refined by several
spectroscopic studies [10-14]. In Section III, I will turn to the question of “What causes
tunneling?” and show that, at least for Mn12, the tunneling is driven in some part by a transverse
magnetic field, presumably of hyperfine origin. I will also review the theoretical picture of
thermally assisted resonant tunneling and discuss experiments that elucidate the different roles
played by dipole and hyperfine fields in the relaxation. Section IV will focus on some recent
results, including experiments on the molecular magnet, “Fe8”, in which the tunneling rate can be
markedly suppressed by a geometric-phase effect controlled by a magnetic field.

                                                     
* The fundamental difference between particle-like systems and spin systems is the structure of their respective Lie
algebras. The commutator for a particle-like system [x, p] = iħ is a c-number. For a spin system, on the other hand, the
commutator, [Si, Sj] = iεijk Sk, which is an operator. Thus, there is no way to rigorously map one system onto the other.
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Fig. 1 Double-well potential of a uniaxial spin. One well corresponds to spin up, the other to spin
down and an applied field tilts the potential. The different m  levels for an S = 10 system are

shown. The arrows schematically illustrate the thermally assisted resonant tunneling process
described in the text.

The concept of quantum tunneling is almost as old as quantum mechanics itself. The ability
of a particle to traverse a classically forbidden region has become ubiquitous in physics: an alpha
particle decaying out of a nucleus, electron-hopping conduction in insulators, Cooper pairs
tunneling through a Josephson Junction, etc. In the late 1970’s and early 1980’s, Caldeira and
Leggett [15, 16] developed the formal theory of macroscopic quantum tunneling, which predicted
that under suitable circumstances macroscopic objects, consisting of many (thousands, millions or
billions of) microscopic entities strongly coupled together, could exhibit uniquely quantum-
mechanical properties. The first clear experimental evidence for macroscopic quantum tunneling
was provided by Clarke, et al. [17], who showed that in a Josephson Junction the phase of the
superconducting order parameter across the junction can tunnel from a “superconducting” zero-
voltage state to a “normal” finite-voltage state. That research is described in detail in the chapter
by Devoret et al. in this volume.

The possibility of quantum tunneling of magnetization was first suggested in 1959 by Bean
and Livingston [18], who found that in the superparamagnetic systems they were studying some
particles seemed to remain unblocked even at the lowest temperatures. This interpretation was
later put forth to explain anomalous relaxation phenomena discovered at low temperatures in
other magnetic systems [19-25]. Guided by the work of Caldeira and Leggett [3, 15, 16],
important theoretical progress was made in the late 1980's [26-28] and much of the theoretical
work on the subject is reviewed in [29-32] as well as in Braun’s contribution to this book.

The semiclassical concept of tunneling usually involves the notion of a particle that escapes
from a metastable potential well without having sufficient energy to overcome the potential
barrier: instead of climbing over the barrier, it “tunnels” through it. The tunneling of the
magnetization vector in a small magnetically ordered particle differs somewhat from this picture
in that the tunneling occurs in angular space with the magnetization vector rotating from one
potential minimum to another. Let us consider a single-domain particle of sufficiently small size
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(smaller than the domain-wall width) that it can be treated as a single, large spin. Further, we
assume that the exchange interactions between the spins within the particle are so strong and the
temperature is so low that the internal degrees of freedom (magnons) can be neglected. The
presence of anisotropy gives the magnetization vector a preferred direction, the easy axis. The
Hamiltonian most relevant for the systems to be discussed in this chapter is

2 4
z z B z zDS AS g S Hµ ′= − − − +H H (2)

where D and A are the anisotropy constants originating primarily from crystal and molecular
fields; as in Eq. (1), ′H  contains terms that do not commute with Sz and is thus responsible for
tunneling. In this model, the easy axis is the z axis. In the absence of a magnetic field, the
magnetization has two equivalent energy minima, corresponding to being aligned parallel or
antiparallel to the z axis. In order to switch from one minimum to another, the system must
overcome an energy barrier of 2 4    U DS AS= + . The height of the barrier can be reduced by
the applied field. The potential energy for this system is shown schematically in Fig. 1, where the
asymmetry is produced by an external field and the levels correspond to the magnetic quantum
numbers m, the eigenvalues of Sz. At high temperatures, the magnetization is easily thermally
activated over the barrier and remains in one well for a time much shorter than typical
measurement times. Thus, it behaves like a paramagnet and, being a large-spin object, is dubbed a
“superparamagnet.”

The rate for making a thermal transition from one well to the other is described by an
Arrhenius law, - /

0  e U kTωΓ = , where 0ω  is called the attempt frequency and represents the
frequency of small oscillations in the metastable well. When the temperature is reduced below a
certain temperature (the so-called blocking temperature), there is insufficient thermal energy to
induce transitions over the barrier on the timescale of a typical measurement and the system is
said to be “blocked,” or trapped in one well or the other. Transitions between wells can still be
observed, but their rate is slow compared to the measurement time. In the limit of zero
temperature, the system can only relax via tunneling. As mentioned above, the semiclassical
picture predicts that as the temperature is raised through cT , the system should cross over from
this zero-temperature-tunneling behavior to simple thermal activation. This should occur when
the Arrhenius exponent and WKB tunneling exponent are nearly equal.

In order to observe macroscopic manifestations of quantum-mechanical effects, dissipation
must be low. The theory of Caldeira and Leggett [3, 15, 16] demonstrates that if one can treat the
environment as a set of independent harmonic oscillators linearly coupled to the macroscopic
object, then the effect of dissipation is to add a term to the WKB exponent, decreasing the
tunneling rate. This effect will not destroy tunneling if the sources of dissipation are infrared-
weak, i.e. have a small spectral weight at low frequencies. For, they showed, it is the low-
frequency environmental factors that contribute most to dissipation. Phonons are in fact infrared
weak since, according to the Debye model, the spectral density for acoustic phonons of frequency
ω  is proportional to 3ω . Garg and Kim [33, 34] have shown in detail that phonons have little
dissipative effect on the tunneling of magnetization. Very general arguments [29] indicate that
electrons in metallic particles can be a significant source of dissipation and so tunneling is
generally sought in insulating materials.
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Experimental evidence for quantum tunneling of magnetization has been found in many
materials at low temperatures. Many of these studies have been reviewed [32, 35-39]. For most of
these studies, samples consisted not of magnetic particles with a unique energy barrier, but,
rather, of particles having a broad distribution of energy barriers so that only statistical quantities
of the whole distribution could be studied. In a variety of these systems the magnetic relaxation
rate is found to cross over to a temperature-independent regime at low temperatures. This
temperature-independent “magnetic viscosity” is cited as evidence for quantum tunneling.
However, because most of these systems cannot be precisely characterized, no rigorous
comparison between theory and experiment is possible.

It was thus very desirable to obtain samples containing magnetic clusters that are closely
monodispersed. One way of doing this is to study not an ensemble of particles but a single, well-
characterized particle. This approach is discussed in Wernsdorfer’s chapter in this volume.

Experimental evidence for tunneling has been reported by Awschalom and coworkers [38],
who observed a resonance in the ac susceptibility and noise spectrum of horse-spleen ferritin at
very low temperatures; they attributed this to quantum coherent tunneling of the magnetization
vector between two degenerate orientations in a double-well potential. These results have
received much attention, but have also elicited considerable debate [40-44].

The molecular magnets are ideal systems to study magnetization tunneling. Unlike most
ensembles of magnetic clusters, the magnetic subunits of a molecular crystal have unique,
chemically determined properties: a macroscopic sample of a molecular magnet is comprised of
about 1017 nominally identical entities with the same magnetic properties and characteristic
energies. Another important feature of these systems is that while the spin of each cluster, S ≈ 10,
is large for a molecular system, it is small relative to most superparamagnetic systems. This small
spin value together with the system's large magnetocrystalline anisotropy yields an appreciable
energy separation between spin levels, allowing the observation of a novel physical effect:
resonant spin tunneling between matching levels on opposite sides of a potential barrier. In the
remainder of this chapter, I will focus exclusively on the evidence for such tunneling in molecular
magnets, particularly Mn12.

I.B. Background on Mn12

Mn12O12(CH3COO)16(H2O)4 was first synthesized by Lis [45] in 1980. He found that the
compound contains four Mn4+ (S = 3/2) ions in a central tetrahedron surrounded by eight Mn3+ (S
= 2) ions in a non-coplanar ring, as shown in Fig. 2. The Mn ions are strongly superexchange-
coupled through oxygen bridges. Surrounding this central magnetic core are 16 acetate ions and 4
water molecules per molecular cluster. These molecules crystallize into a body-centered
tetragonal lattice with the c axis having the smallest lattice parameter. Magnetic interactions
between molecules are thought to be small both because the nonmagnetic ligands keep Mn ions
of different clusters far apart (> 7Å) [45] and because the Curie-Weiss temperature for this system
is <70 mK [46-49]. In contrast, the coupling between Mn ions within a cluster is so strong that at
low temperatures the system can be treated as a single macrospin with S = 10.*

                                                     
* Inelastic neutron scattering experiments [50] indicate that excitations to other (e.g. S = 9) spin manifolds occur at
energies of ~30 K. Because of this, there has been some effort to theoretically treat the Mn12 molecule using a more
complete multispin analysis [51-53]. While such a model predicts somewhat different tunnel splittings than a single-
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Significant interest in Mn12 was created in 1991 when chemists at the University of Florence,
Italy, discovered [54] that the compound had an unusually high spin ground state of S=10. This
was determined by AC susceptibility measurements in zero DC magnetic field and confirmed by
measurements of the DC saturation magnetization. The spin value suggests a simple picture (Fig.
2) of the spin order within a molecule, with all of the spins of one valence pointing up and the
remainder pointing down [54-56]. This picture has recently been confirmed experimentally by
polarized neutron diffraction studies [57] and theoretically by electronic-structure calculations
[58]. Early electron-spin-resonance (ESR) experiments also indicated that Mn12 has a large
negative magnetocrystalline anisotropy [54, 55]. This fact manifested itself in measurements the
imaginary part of the AC susceptibility [47, 48, 54, 55], and in the hysteresis at low temperatures
[59, 60]. This was essentially the first evidence that a microscopic magnet could exhibit one of
the telltale signs of bulk magnets, namely, magnetic bistability. Unlike bulk magnets, however,
where hysteresis is associated with the motion of domain walls, the hysteresis in Mn12 has been
associated with the intrinsic bistability of the individual magnetic clusters [59]. Specific-heat
measurements showed that no phase transition accompanies the onset of hysteresis [47, 48],
confirming that the hysteretic behavior is associated with superparamagnetism, not long-range
order. AC susceptibility data as well as DC magnetic relaxation data have indicated a single
characteristic relaxation time [36, 46-49, 59-61] that obeys an Arrhenius law down to 2.1 K. This
indicates that this system is close to an ideal superparamagnet: a collection of identical magnetic
entities with the same orientation and energy barrier.

From fits of the relaxation time to the Arrhenius law, the barrier height has been found [36,
46-49, 59, 60, 62, 63] to be ~70 K and the attempt frequency is estimated to be ~107 Hz, which is
unusually small for superparamagnetic systems. A number of early experiments provided possible
evidence for temperature-independent quantum tunneling at low temperatures in Mn12. Using
small single crystals, Barbara et al. [36] and Paulsen et al. [46, 49] found deviations below 2.0 K
from Arrhenius-law behavior toward a temperature-independent relaxation rate. Much of their
conclusions were based on relaxation experiments that sometimes lasted several days and,
nevertheless, probed only a small fraction of the total decay of the moment.

The first evidence for resonant tunneling in Mn12 came in 1995. Barbara et al. [36] found a
minimum in the relaxation time τ(H) at H = 0, followed by a maximum at ~ 2 kOe. For a classical
magnet, on the other hand, one expects the relaxation time to decrease monotonically with
increasing field since the field reduces the energy barrier. They suggested that the increased
tunneling rate at zero field may be due to "the coincidence of the level schemes of the two wells."
At about the same time, Novak and Sessoli [48] found a similar minimum at H = 0 and another
one at approximately 3 kOe. This rather limited data prompted them to make the remarkable
conjecture that the observed behavior could be due to thermally assisted tunneling between
excited states in a double-well potential. Despite the fact that the 3 kOe minimum they reported is
not one of the fields at which resonant tunneling was later found to take place, their conjecture
turned out to be correct, as we shall see below.

                                                                                                                                                             
spin picture, the difference is not within the current experimental resolution. Furthermore, the data presented herein is
currently quite adequately explained within the single-spin model.
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Fig. 2 Structure of magnetic core of the Mn12 molecule. Only the Mn4+ (large shaded circles),
Mn3+ (large open circles) and oxygen (small circles) ions are shown. The arrows indicate the
configuration of the spins that results in a total spin of 10 for the molecule. (Adapted from [59]).

II. EVIDENCE FOR THERMALLY ASSISTED RESONANT
TUNNELING IN MN12

In this section I will present magnetization data that demonstrate that Mn12 exhibits resonant
magnetization tunneling between spin states, a phenomenon that has been confirmed through
numerous experimental studies [5, 62, 64-70]. Before discussing the data, a few words about the
samples are in order. While some of the data shown below were taken using millimeter-size
single crystals, much of it comes from oriented powders of micron-size crystallites. Oriented-
powder samples were prepared by the following (or similar) procedure. Approximately 10 mg of
powdered sample was mixed into a low viscosity liquid such as melted paraffin, toluene or
Stycast 1266, a non-magnetic epoxy. The liquid/sample mixture was poured into a sample
container and placed in a 55-kOe magnetic field at room temperature. Because the crystallites are
needle-like, with an aspect ratio as large as 10, their shape anisotropy induces them to torque to
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align with the applied field. When an epoxy matrix was used, the system was kept at room
temperature until the epoxy had set. Samples in paraffin and toluene matrices could be cooled
down almost immediately. This resulted in pseudo-single-crystal samples in which all of the
crystallites were oriented to within a few degrees of the field axis. Once the sample was cooled,
the matrix held the crystallites fixed and prevented them from rotating when the field was
changed during the measurements.

Fig. 3(a) shows the magnetization as a function of magnetic field at temperatures between 1.7
K and 3.0 K from a sample in a paraffin matrix. This data was obtained with the magnetic field
applied along the easy axis of the sample. As expected for superparamagnetic systems, the area
enclosed within the hysteresis loops is found to increase as the temperature is reduced. But,
unlike typical superparamagnets, the hysteresis loop shows steps at certain values of magnetic
field. As one proceeds around the loop, steps occur as the magnetic field is increased from zero,
but no noticeable steps occur when the field is reduced back to zero.

It should be reiterated that the hysteresis observed in this system is a manifestation of the
bistability of the individual Mn12 molecules, not the motion of domain walls since there are no
domains in the system. The hysteresis is instead attributed to the fact that each magnetic entity
has an energy barrier to magnetization reversal and can therefore be trapped for long times in a
metastable orientation. The slow (temperature-dependent) relaxation from this metastability is
responsible for the hysteresis and the other effects discussed below.

Fig. 3(a) also indicates that as temperature is lowered, new steps arise out of the saturation
curve while others that were clearly observable at higher temperatures become less pronounced.
These “frozen” steps can be recovered when the magnetic field is swept more slowly,
emphasizing the fact that the steps are related to a relaxation phenomenon. In fact, if one stops
sweeping the loop at any point, the magnetization will relax toward its equilibrium value whether
or not the field is tuned to one of the steps, as will be discussed below.

In Fig. 3(b) the slope dM/dH of the curves shown in Fig. 3(a) is shown as a function of
external magnetic field. Maxima (corresponding to the steepest portion of the steps) are found at
particular values of the field that appear to be independent of temperature. A careful analysis
shows that the “step field” – the value of external field H for each step – does shift slightly with
temperature. While one might conjecture that this slight dependence is intrinsic, it is also found
that the position of each step similarly depends on the rate at which the magnetic field is swept.
The common thread that links both cases is that the step field has a slight linear dependence on
the instantaneous value of the magnetization at which the step occurs [7]. This dependence can be
easily explained by noting that each individual Mn12 molecule sees not only the applied field, but
also the mean dipolar field from all of its neighbors. It is tempting to equate this effective field,

effH , with the magnetic induction,     4B H Mπ= + , as has been done in some reports [6, 7,

63, 64] (including some by this author). However, it was pointed out by Sessoli [71] that this
relation, despite its intuitive appeal, is too simplistic and predicts a stronger dependence of

effH on M than is observed. A more careful calculation [72] of the classical dipole field on Mn12

molecule due to its neighbors (treating each molecule as a point dipole and extending the number
of neighbors until the results converge) yields very good agreement with data: Heff ≈ H + 7.1M.
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Figure 3 (a) Hysteresis loops of a powdered sample of Mn12 that has been oriented in a paraffin
matrix. At all temperatures shown steps are observed in the hysteresis loops as the field is
increased (in either direction) from zero but not when it is decreased. (b) Derivative of the
hysteresis loops in (a). The peaks indicate the fields at which the steps in the loops are steepest.
The data indicate that the steps always occur near the same values of magnetic field.
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Fig. 4 shows the value of effH at which a step occurs as a function of step number n, where

the steps have been labeled by integers starting with the one at zero field labeled #0. The straight-
line fit (solid line) indicates that there are steps at equal intervals of approximately 4.5 kOe. The
figure shows seven steps, including #0, have been observed. A total of 12 steps have been seen in
pulsed-field measurements [73] at 1.53 K and in measurements at temperatures below 1 K [66].
One can estimate empirically the total number of steps expected from the data in the hysteresis
loops by noting the temperature at which a step first appears. This temperature, T*, should
characterize the barrier height U, which decreases with applied field as

2 2(  -  )  ~  (  -  )c cH H n n , since the step number n is proportional to H (Fig. 4). This implies
that n - nc ~ T*1/2. Fig. 5 shows the step number plotted as a function of this characteristic
temperature T*1/2. The linear fit extrapolates to nc = 20.6 at zero temperature, indicating that there
could be about 21-22 steps (counting n = 0), which is consistent with the prediction that the
number of steps should be 20 (see below). The fact that a total of only 12 steps have been
observed when one includes data down to the lowest temperatures is most likely because the
barrier gets so low for the higher-numbered steps that the ground-state tunneling rate becomes too
fast to measure.

Figure 4 The field effH  at which a step occurs as a function of step number. The steps are labeled

by integers starting with the one at zero field (step #0). The linear (solid line) fit indicates that a
step occurs about every 4.5(1) kOe. The dotted (dashed) line indicates the expected values of

effH , assuming that tunneling always occurs between levels that are 3 (4)bm =  below the top of

the barrier.
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For a zero-field-cooled sample, Fig. 6 shows the magnetization measured in various magnetic
fields as the temperature is increased. For a given field, the magnetization increases with
temperature as the additional thermal energy allows more spins to overcome the anisotropy
barrier and line up with the applied field. The magnetization peaks at the blocking temperature

BT  where the spins reach thermal equilibrium; the subsequent decrease in magnetization is due to

the Curie-law-like competition between magnetic and thermal energies. BT  shows an overall
decrease as the field is raised, as expected for superparamagnetic particles in which the
anisotropy barrier is reduced by the applied field. However, the curve obtained at 9.0 kOe
exhibits an abrupt shift toward lower temperatures. Similar shifts are found at each of the fields
where steps are seen in the hysteresis loops. In Fig. 7 the blocking temperature is plotted as a
function of measuring field from 100 Oe to 19 kOe. Superimposed on an overall decrease as a
function of field, the blocking temperature BT  exhibits periodic dips at the same values of field as
the steps in the hysteresis loops. Ignoring the dips, one obtains a zero-field blocking temperature
of ~3.5 K. Using a measurement time of 100 seconds (the time between data points) and an
Arrhenius prefactor, 0τ , of 2 x 10-7 seconds [36, 46-49, 59, 60], one can estimate the size of the
energy barrier to be U = kTB ln(tmeas / τ0) ≈ 71K, in fair agreement with published results [36, 46-
49, 54, 55, 59, 60, 62, 63]. The periodic steps in the hysteresis loop, accompanied by dips in the
blocking temperature at the same magnetic fields imply that the relaxation rate is significantly
faster whenever the magnetic field is an integer multiple of 4.5 kOe.

This can be confirmed directly by looking at the magnetic relaxation of the system. For a
sample cooled to 2.4 K in zero field and measured in a field of 9.0 kOe or 9.5 kOe, Fig. 8 shows
the difference between the magnetization and its asymptotic value, 0M , plotted as a function of
time on a semilogarithmic scale. Note that the long-time tail of the curve appears to be close to
exponential, but that the earlier data (most of the decay of the moment) is faster. There are several
possible explanations for this, including the existence of a second species of Mn12 with a smaller
barrier and, hence, faster relaxation rate as well as the fact that the mean dipolar field in the
sample is changing as the sample relaxes. Both of these effects will be discussed a bit later in this
chapter. Nevertheless, independent of the exact form of the relaxation, there is dramatically faster
relaxation at 9.0 kOe than at 9.5 kOe. Disregarding the faster-than-exponential decay during the
initial ~2000 seconds, fits to an exponential form 0( ) /

0 (1 )t tM M e τ− −= −  with 0M , 0t and τ as
free parameters yield time constants of 1048 s and 2072 s for 9.0 kOe and 9.5 kOe, respectively.

Repeating this procedure at various fields and temperatures one obtains the relaxation rate
data shown in Fig. 9. Here the rate 1/τΓ =  is plotted as a function of external field H at two
temperatures. One can identify four maxima in the decay rate: at approximately H = 4.5 n kOe,
with n = 0, 1, 2, and 3.

All of the above results can be explained through a simple model of thermally assisted
resonant tunneling using the Hamiltonian Eq. (2). If the field is applied along the easy (z) axis,
and one ignores ′H , the eigenstates of Eq. (2) are m , the eigenstates of Sz. The system can then

be represented schematically as a double-well potential, as shown in Fig. 1, where the 2S + 1 = 21
energy levels correspond to different projections of the spin along the easy axis. An applied field
is responsible for the asymmetry in the figure, making one well, say spin up, lower in energy than
the other. In zero applied field, the wells are symmetric and there is a two-fold degeneracy for
each state (except m = 0): m = 10 and -10, m = 9 and -9, etc. When the field is raised, levels in
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one well will move up while levels in the other well will move down and for certain values of
field levels in opposite wells will again come into resonance.

The model of thermally assisted resonant tunneling is as follows. When the field is such that
no pairs of levels are near resonance, the system must relax by thermal activation over the entire
potential barrier. However, if two levels near the top of the barrier (where the tunneling rate is
large) come into resonance, the system no longer needs to be activated to the top of the barrier but
only to the resonant pair, where it can tunnel through the barrier quickly. Thus, tunneling
effectively cuts off the top of the barrier, increasing the interwell relaxation rate and thus giving
rise to the steps in the hysteresis loops and the dips in the blocking temperature.

It is straightforward to calculate the fields at which levels m and m′  (in opposite wells) come
into resonance. The results is:

2 2
, 1 ( )m m

z B

Dn AH m m
g Dµ′

 ′= + +  
(3)

where gz is the Landé g factor and n = m + m' can be identified with the step index above. If one
ignores the second term in the brackets, the resonant field is an integer multiple of D/gµB. This is
consistent with Fig. 4, which shows steps at regular intervals of field. From the fact that the steps
occur approximately every 4.5 kOe, one can deduce that D/g = 0.210 cm-1, which is about 5%
larger than one would expect from the best spectroscopic determinations of D and g. The above
analysis was the approach taken in the early reports [4-6, 64, 65] before the discovery [10, 11, 74]
of the fourth-order anisotropy term in Eq. (2). The full Eq. (3) (including the second term in the
brackets) shows that the resonance fields are no longer simply proportional to n and, therefore,
one may not immediately expect the observed linear dependence. This apparent inconsistency can
be resolved by assuming that for every n, the tunneling always occurs between states that are a
fixed number of levels bm  below the top of the barrier (i.e., in Fig. 1 bm  = 3). Then, using the
most accurate measured values for the Hamiltonian parameters D = 0.3855 cm-1 and A = 7.8 x 10-4

cm-1 [14] and gz = 1.94 [10], for a given value of bm  one can determine without any adjustable

parameters the expected resonance fields. The results for bm = 3 (4) are shown by the dotted
(dashed) line in Fig. 4. The agreement with the data is quite satisfactory for both values although
somewhat better for bm  = 3.

Another satisfactory aspect of this model is the number of resonances it predicts. Since there
are 2m + 1 = 21 levels, there can be as many as 20 level crossings before the field reduces the
barrier to zero. In this light, the result of nc ≈ 21 deduced from Fig. 5 using data up to n = 6 is a
fortuitously good result. If one further constrains, as above, that tunneling always occurs from,
say, mb = 3 (4), then there can be no more than 16 (14) resonances before the ground state in the
metastable well becomes the tunneling level. Given the roughness of the constant-

bm approximation, this number is not inconsistent with the observed 12 resonances.
All of the data shown above shows a strong temperature dependence: the hysteresis-loop

width increases with decreasing temperature and the measured relaxation rate varies
exponentially with temperature. This implies that the relaxation mechanism is thermally assisted
and cannot be accounted for simply in terms of tunneling out of the ground state. Estimates of the
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tunneling rate from the ground state under the relevant experimental conditions yield rates that
are orders of magnitude slower than the observed relaxation rate (see Table I).

Table I: Tunneling splitttings for the n = 0 ( m m′ = − ) resonance for different m values calculated
using Eq. (6) with S = 10, Bx = 0.1 kG and D = 0.41 cm-1.

m
,m m−∆  (Hz)

1 3.2 x 108

2 1.1 x 105

3 3.5 x 100

4 2.3 x 10-5

5 4.7 x 10-11

6 3.7 x 10-17

7 1.2 x 10-23

8 1.7 x 10-30

9 1.1 x 10-37

10 2.11 x 10-45

Further confirmation for the picture of field-tuned, thermally assisted resonant tunneling out
of a metastable spin state has been provided by AC susceptibility measurements [62, 63]. In these
studies, it was found that the relaxation rate obeyed an Arrhenius law and that the inferred barrier
height varied with applied magnetic field by as much as 12 K. This implies, first, that the picture
that tunneling effectively reduces the energy barrier for thermal activation is correct and, second,
that the tunneling is occurring 3 or 4 levels below the top of the barrier, consistent with the
discussion above. Evidence for resonant tunneling also appears in the magnetic-field dependence
of specific heat [62, 67-69] and NMR [70] data.

In sum, then, the proposed model explains all of the experimental observations: (1) Resonant
tunneling causes the transition rate to increase at values of the magnetic field that yield energy-
level crossings in the two wells. (2) When the field is reduced from saturation, no steps are seen
in the hysteresis loops because the spins are already in the lower-energy potential well. When the
field is reduced to near zero or reversed, the populated well becomes metastable allowing
resonant transitions out of the populated states and the corresponding steps. (3) The higher-
numbered steps have progressively faster magnetic relaxation times because the anisotropy
barrier is lowered by the applied field. Therefore, lower temperatures are needed to observe them.
(4) The fields at which the steps occur (roughly regular intervals of field) can be quantitatively
explained using the Hamiltonian Eq. (2) and the assumption that tunneling is occurring from a
level bm = 3 or 4, i.e. 3 or 4 levels below the top of the barrier.
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Figure 5 Step number n as a function of T*1/2. The straight-line fit indicates that there may be as
many as 21-22 steps, including n = 0, consistent with the fact that there can be no more than
2 20S =  level crossings.

Figure 6 Zero-field-cooled curves for Mn12 at various magnetic fields, as indicated. The
magnetization is plotted as a function of increasing temperature for a sample of oriented powder
in a Stycast matrix. The curve taken at 9.0 kOe is anomalous, apparently shifted toward lower
temperatures relative to neighboring curves.
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III. “WHAT CAUSES TUNNELING?”

In this section, I will show that, despite the clarity of the above explanation, there are still
some open questions regarding the mechanism of tunneling and relaxation in Mn12. (The situation
is somewhat clearer in another molecular magnet, Fe8, where much of ′H , the off-diagonal part
of the Hamiltonian, has been determined with fair accuracy by spectroscopic means [75, 76].) I
will show that Mn12 violates a selection rule and thereby that tunneling must, at least in part, be
driven by some transverse magnetic field, presumably of hyperfine origin, and describe some of
the work to elucidate the precise nature of this field. Another mechanism, a transverse tetragonal
anisotropy, has been discussed in the literature as a possible additional source of tunneling.
However, the experimental evidence for its existence is ambiguous.

Figure 7 Blocking temperature as a function of field. The blocking temperature was taken from
the peaks of the curves in Fig. 6 and similar curves at other fields. The dips in the blocking
temperature occur at the same fields as the steps in the hysteresis loops.

III.A. Selection-rule Violation

In theoretical discussions, magnetic tunneling is often attributed to the presence of a
transverse component in the magnetocrystalline anisotropy tensor [29-32]. Since the anisotropy
arises from spin-orbit coupling and is therefore even under time reversal, it must appear as an
even power of the spin operator S. Mn12 has tetragonal symmetry, so that the lowest-order
transverse term is
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4 4( )
2anis
C S S+ −′ = +H (4)

where S+ and S- are the usual spin raising and lowering operators. This form only allows
transitions that obey the selection rule ∆m = ±4q (integer q). This would, in turn, prohibit every
other step: for whenever the system is tuned to an odd-numbered step (e.g. n = 1), the levels in
resonance are always matched even/odd and odd/even (e.g. 10/-9, 9/ -8, 8/-7,...), yielding a
forbidden, odd ∆m for all matched levels. This transverse-anisotropy selection rule can be thought
of as a generalization of Kramers’ theorem that, in the absence of a magnetic field, half-integer
spin systems cannot tunnel (have at least two-fold degeneracies): for integer spins only the even-
numbered resonances are allowed, while for half-integer spins, only the odd-numbered
resonances are allowed.

Figure 8 Relaxation curves on and off resonance. The difference between the magnetic moment
and its asymptotic value is plotted on a logarithmic scale as a function of time for a sample of
oriented powder in a Stycast matrix. The sample was cooled in zero field to 2.4 K and then the
indicated field was applied. The data show that the relaxation is markedly faster for the curve
taken with a field of 9.0 kOe, which is near where one of the steps occurs in the hysteresis loops.
The straight-line fits are to exponentials using data for t > 2000 s.

The data shown in the previous section indicate that all steps are observed, even the
“forbidden” ones. In fact, for Mn12 there is no hint of an asymmetry between the allowed even
steps and the forbidden odd steps. A source of tunneling that does not prohibit any steps is a small
transverse magnetic field Bx, which gives rise to a term of the form

( )
2

x B x
B x B x x

g Bg B S S Sµµ + −′ = = +H (5)
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Figure 9 Relaxation rate as a function of field for a powdered sample in a paraffin matrix. The
rate was determined from fits to relaxation curves similar to those in Fig. 8. The peaks in the
relaxation rate occur at the same fields as the steps in the hysteresis loops.

This allows all transitions ∆m = ±1q, prohibiting no steps. Such a transverse field can arise in
three possible ways: it can be applied externally, it can come from dipolar interactions between
neighboring molecules or it can come from the hyperfine interaction with the Mn (and other)
nuclei in the system. In the experimental data shown above, no external transverse field was
intentionally applied. One may conjecture [77, 78] that (especially in the oriented-powder
samples) the sample’s easy axis is not perfectly aligned with the applied field, giving rise to a
small transverse component of the field. This argument cannot apply to the zero-field resonance,
of course, since the applied field is near zero. However, for the usual Mn12 molecule with integer
spin 10 the zero-field resonance is allowed by the transverse-anisotropy selection rule, as
discussed above. Some variants of Mn12, in which the magnetic core is chemically reduced, have
a half-integer spin of 19/2 [79, 80]. These (as well as an unrelated molecule called Mn4 with spin
9/2 [81]) also show a clear zero-field resonance, which does in fact violate the transverse-
anisotropy selection rule and Kramers’ theorem. This rules out the possibility that the tunneling is
due to a misaligned magnetic field.

Dipole fields as a possible cause of tunneling have been discounted by a study in which the
Mn12 molecules were dispersed in a glassy matrix in which dipole interactions among molecules
were negligible [82]. At least for the zero-field resonance that could be studied in that sample, the
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relaxation rate as a function of field behaved largely the same as for a crystalline sample.*

Therefore, hyperfine fields seem to be the most likely source of the transverse field.

III.B Transverse-Field Experiments

Before discussing the experiments that probed the role of hyperfine fields, I will digress a bit
to show how an intentionally applied transverse field can be used to test the model of thermally
assisted resonant tunneling.

Fig. 10(a) shows the magnetization as a function of longitudinal field for various fixed values
of transverse field at 2.0 K [83]. For each value of transverse field, one quarter of the hysteresis
loop is shown, the other quarters being either redundant or featureless. In taking this data, a
sample rotator was used to adjust the angle between the sample's easy axis and the direction of
the applied magnetic field. This angle was varied as the field was swept such that the transverse
component of the field remained constant. It is immediately clear that, while the height of each
step varies with transverse field, the steps always occur at the same values of longitudinal field,
independently of the value of the transverse field. This is clearly demonstrated by the derivative
of the magnetization, shown in Fig. 10(b). Similar conclusions were drawn by Hernandez et al.
[6] and Lionti et al. [84]. This result is consistent with calculations that show that the resonance
condition Eq. (3) (in the simple case of A = 0) is invariant in the presence of a transverse field to
at least fourth order in perturbation theory [85, 86].

To leading order in perturbation theory, the tunnel splitting between resonant levels m and m'
depends on the transverse field Bx as

, 2

2 ( )! ( )!
[( 1)!] ( )! ( )! 2

m m
B x

m m

g BD s m s m
m m s m s m D

µ
′−

′

 ′+ −
∆ =  ′ ′− − − +  

, (6)

again in the simple case A = 0 [86, 87]. This formula is an extension of one for ground-state
tunneling originally derived by Korenblit and Shender [88]. The unsurprising upshot of this result
is that tunneling between levels near the top of the barrier is faster. A quantitative tabulation of
Eq. (6) for the n = 0 resonance for a transverse field of 0.1 kG is given in Table I. It is clear that
the tunnel splitting increases by several orders of magnitude each time one climbs up one
resonant pair towards the top of the barrier (see Fig. 1). This lends credence to the picture that
tunneling is occurring primarily in one pair of resonant levels. As one turns up the transverse
field, the tunnel splitting for each pair should increase and, therefore, the relevant tunneling pair
should drop from, say, bm  = 3 to bm  = 4. Consequently, the relaxation rate should increase in a
series of jumps and plateaus [7, 87].

A detailed study of the relaxation rate as a function of both longitudinal and transverse field
components was performed on a single crystal [83]. In Fig. 11, the measured on-resonance and
off-resonance relaxation rate (extracted from the long-time tail of the relaxation curves, as above)
is plotted on a semilogarithmic scale as a function of transverse field for the n = 1 resonance at T

                                                     
* One might object that the zero-field resonance is not a forbidden resonance and so no transverse field is necessary for
it. While this possibility has not been experimentally ruled out (i.e. by a similar study of a half-integer variant of Mn12),
it seems unlikely given that all of the resonances have about the same magnitude.
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= 2.7 K. One sees that both on and off resonance, the relaxation rate seems to have a plateau
between 2 and 3 kOe. A similar plateau was seen in data taken at 2.6 K. There has yet to be a
more thorough study of the transverse-field dependence of the relaxation rate to confirm the
expected series of jumps and plateaus.

Figure 10 Magnetization steps for various transverse fields. (a) Magnetization as a function of
longitudinal field for several values of transverse field at 2.0 K. (b) The derivative of the curves
in (a). The steps occur at the same values of longitudinal field for all values of transverse field. A
small misalignment of the sample rotator is responsible for the fact that the 0n =  step is not at
zero field.
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Figure 11 Relaxation rate on and off resonance as a function of transverse field. The straight line
in this figure is the expected classical rate discussed in the text.

One interesting complication in interpreting the results of Fig. 11 in terms of tunneling is the
fact that a transverse field also has the well-known effect of lowering the spin’s classical energy
barrier. The expected classical dependence of the relaxation rate is shown by the straight line
(labeled “classical”) in the figure, where the slope was calculated with no free parameters and the
vertical intercept was simply fixed to correspond to the measured off-resonance rate at Hx = 0.
The fact that the general trend of the data seems to follow this line is more than simply a
coincidence. In the limit of a large (classical) spin there is a rigorous quantum-classical
correspondence between the top of the classical energy barrier and the resonant pair for which the
tunnel splitting is comparable to the anisotropy parameter D [86]. Thus, while it is tempting (and
true!) to attribute the general increase in the relaxation rate as a function of transverse field to
tunneling, the result nevertheless also simply confirms that a transverse field reduces the classical
energy barrier. The only non-classical effect here is the observed plateau.

III.C. Details of the relaxation process

Let us return to the issue of the relaxation in Mn12 when the tunneling is not augmented by an
external transverse field. We established earlier in this section that the most likely mechanism of
tunneling is a transverse field due to hyperfine fields. Some early theoretical estimates [89]
yielded an effective Mn hyperfine field of as high as 300 – 500 Oe. This led to the search [90] for
evidence of random hyperfine fields in the line shape of the tunneling resonances. For it was
expected that the hyperfine fields would give rise to inhomogeneous (Gaussian) broadening of the
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resonance. Results for an oriented-powder sample in a paraffin matrix are presented in Fig. 12,
where the relaxation rate is plotted as a function of field for four different temperatures. The data
for each temperature fit very well to a Lorentzian function. This indicates that any
inhomogeneous broadening of the resonance is negligible. Thus, no evidence of hyperfine fields
could be found in the data. From the fits the full width is found to be 267, 236, 270 and 271 Oe
for 2.5, 2.6, 2.7 and 2.8 K, respectively. This is consistent with the width found by fitting AC
susceptibility data to a Lorentzian [63].

The Lorentzian shape of the tunneling resonance suggests that it represents some dynamical
aspect of the relaxation process. One interpretation is that the data reflect the natural line shape of
the levels that are involved in the tunneling, the width then being a measure of the levels’
lifetimes. If we assume that the tunneling is occurring between, say, levels m = 3 and m = -3, then
the observed width of ~250 Oe corresponds to a lifetime / (2 )Bh g m Hµ ∆ of 2.5 x 10-10 s. While
this is typical of spin-lattice relaxation times in many magnetic systems, the measured Arrhenius
prefactor ( )0 0=2 /τ π ω  for Mn12 is around 10-7 s and it is this number that is expected [56] to

characterize the typical lifetime of excited states in the system. Another interpretation is that the
line width represents the tunnel splitting itself. However, the tunnel splitting should be a sensitive
function of transverse field (Eq. (6)), but the line width does not show any strong dependence on
transverse field [83].

Understanding the details of the thermally assisted tunneling process has been a challenging
theoretical problem. While no completely satisfying explanation exists for the experimental data,
some important issues have become clearer. There have been numerous theories of ground-state
(i.e. not thermally assisted) tunneling in the molecular magnets [91-95], which are not relevant to
the current discussion, although some will be considered a bit later in this chapter. In the
discussion that follows I borrow several ideas from various theories of thermally assisted resonant
tunneling [7, 56, 77, 78, 87, 96-99]. While there are several important details that make each of
these theories distinct, I will initially concentrate on the aspects that most have in common and
then discuss their differences.

Most of the theories use some version of a master-equation approach, which can be
summarized as follows. Each spin eigenstate m  has a probability mp of being occupied (i.e.

each mp  is a diagonal element of the density matrix in the m  representation). Transitions

between m  states can occur in one of two ways: by the absorption or emission of phonons or by

tunneling. Phonon-induced processes are governed by a spin-phonon interaction Hamiltonian of
the form:

{ }
{ } { } { } { }

2 2
1 2

3 4

( )( ) ,

( , , ) ( , , ),

sp xx yy x y xy x y

xz x z yz y z xz x z yz y z

g S S g S S

g S S S S g S S S S

ε ε ε

ε ε ω ω

= − − + +

+ + + +

H
(7)
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Figure 12 Line shape of resonance n = 0. The relaxation rate is plotted on a logarithmic scale as a
function of field near zero field for a sample of oriented powder in a paraffin matrix. The data
have been fit to Lorentzian functions plus a uniform background.

where ( )1
2( ) ( )u uαβ αβ α β β αε ω ≡ ∂ + − ∂  is the strain (rotation) tensor with u the displacement

vector, the curly brackets indicate anticommutation and the ig  are coupling constants. It is
important to note that the first two terms of Eq. (7) implicitly contain the spin raising and
lowering operators, S+  and S− , to second order. This allows a single phonon to change the spin

quantum number m by 2: 2m m→ ± . The other terms, which are linear in S+  and S− , allow

“first-order” transitions: 1m m→ ± . Transition rates for both of these kinds of processes are

given by golden-rule-type expressions:
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where sp′H  is the spin-operator part of spH , ,m mE ′ is the difference in energy between m  and

m′ , ρ  is mass density, c is the speed of sound and the constants of proportionality depend on
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the relative strengths of the coupling constants ig  in Eq. (7). Incoherent tunneling between levels

m  and m′  in opposite wells can be described by a Lorentzian function:

2
,

, 2 2 2
, ,

,
/ 4

m m
m m

m m m mE
γ
γ

′
′

′ ′

∆
Γ =

+ + ∆
(9)

where ,m m′∆ is the bare tunnel splitting in the absence of dissipation (given by, e.g., Eq. (6) if

tunneling is induced entirely be a transverse magnetic field). The resonance width γ is the

concatenated level widths of m  and m′ ; i.e. m mγ γ γ ′≈ +  with mγ  being the total inverse

lifetime of m , which can be calculated with the help of Eqs. (8). Eq. (9) is valid as long as

γ<<∆ ′m.m  or m,mm.mE ′′ ∆>> , the incoherent regime. In the opposite limit in which tunneling is
coherent, the analysis becomes complicated by the need to carefully treat the off-diagonal
elements of the density matrix. For the purposes of simplicity I will limit discussion to the
incoherent tunneling case.

For a given set of spin-phonon transition rates, Eqs. (8), and tunneling rates, Eq. (9), the
population of the state m  will obey

, , 1 , 2 , 1 , 2

1, 1 2, 2 1, 1 2, 2
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= Γ − − + + + +

+ + + +

&
(10)

With 21 of these equations for a spin-10 system like Mn12, a formal solution, while
straightforward, is practically unwieldy. Numerical solutions are also straightforward, but do not
necessarily elucidate the essential physics. However, one can make some reasonable arguments to
get at the crux of the relaxation process.

For simplicity, let us limit our discussion to only “first-order” spin-phonon transitions.
Consider states on the 0m >  side of the barrier, where states with higher m values lie lower.
Thus, for example, , 1m mγ −  corresponds to an “up” transition and , 1m mγ +  to a down transition, as

illustrated schematically in Fig. 13. Now, as Table I demonstrates, the tunneling rate varies by
several orders of magnitude each time one climbs up the ladder of states. Except at the lowest
temperatures, some of the lower levels will have tunneling rates much slower than the rate for
phonon absorption: 1−′′ <<Γ m.mm.m γ . These low-lying levels will rapidly achieve a sort of local

thermal population within the well much faster than the well is depleted. Thus, ,m SE
m Sp e pβ−=

for these levels. Let us consider the highest level m  for which this is true. The tunneling rate

for the next highest level 1m −  is sufficiently large such that its population is transferred into

the opposite well faster than the level can be thermally repopulated. The population in m  can

be transmitted to the opposite well in one of two ways. The first is direct tunneling to the level
m′  in the right well with which it is resonant. The total rate for this process is ,

,
m SE

m m e β−
′Γ
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(tunneling rate times population of the level). The other process involves activation to 1m −

and yields a total rate of , 1, , 1,
, 1 1, 1,( )m S m m m S m SE E E E

m m m m m me e e eβ β β βγ γ γ− −− − − −
− − −= = . The tunneling

rate for level 1m −  does not come into play here since, by construction, it is faster than the

thermal repopulation rate and the latter is therefore the rate-limiting step.
Which of the two processes, tunneling from m  or activation to 1m − , dominates the

relaxation depends sensitively on temperature, since their ratio is

1,
, 1,( / ) m mE

m m m m mr eβγ −
′ −= Γ . (11)

As one raises the temperature, for a given m , mr  rapidly changes from 1>>mr  to 1<<mr  and

the dominant level shifts from m  to 1m − . By analogy, at some higher temperature, it will

again shift, this time from 1m −  to 2m − , etc. This climbing up the ladder of levels will not

continue all the way to the top of the barrier, however, because for some level topm  the

tunneling rate ,top topm m′Γ  will be larger than the phonon-emission rate 1,top topm mγ − and, hence, 1mr >

at all temperatures. This level is then the effective top of the barrier and at high temperatures
tunneling will always occur from this level. This explains the observed Arrhenius law at high
temperatures when the field is tuned to a resonance [62, 63]: resonant tunneling has reduced the
barrier height to 

topm SE E−  and it is this energy, not the full barrier height U, that goes into the

Arrhenius law.

Figure 13 Schematic diagram of allowed transitions to or from level m . Shown are first-order

( 1m m↔ ± ) and second-order ( 2m m↔ ± ) spin-phonon transitions as well as tunneling

transitions ( m m′↔ ).

The above discussion, while capturing some of the flavor of how the thermally assisted
process works, is somewhat imprecise. Detailed theoretical analyses have been performed and I
will review and contrast these now. The main differences among these theories are what
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mechanisms produce tunneling and how the spin-phonon interaction is treated. Many of these
theories take their cue from early work by Villain et al. [56], who treated the over-barrier (no
tunneling) relaxation of molecular magnets. One of the first theoretical studies of the thermally
assisted tunneling process was done by Garanin and Chudnovsky [87] (see also [7]). They treated
the relaxation of Mn12 using a model of thermally assisted tunneling in which the tunneling is
produced by a static transverse magnetic field, Eq. (5), and which included only first-order spin-
phonon transitions, in which the coupling constant 4g  is calculated explicitly. They predict the
resonance to be a superposition of Lorentzians, but the predicted relaxation rate was orders of
magnitude too small and the line width was much narrower than that observed. They invoked
inhomogeneous broadening by random fields to account for the broad resonances observed.

Luis et al. [96, 97] realized that although a transverse anisotropy (Eq. (4)) alone prohibits the
odd resonances, by including a small transverse field, Eq. (5), one could get tunneling from all of
the resonances. Put simply, the transverse field breaks the symmetry and lifts the selection rule
while the transverse anisotropy is primarily responsible for the magnitude of the tunnel splittings.
These authors also limit themselves to using first-order spin-phonon transitions, but treat the
coupling constant as a free parameter in order to achieve satisfactory agreement between their
calculated relaxation rate and the data. Their calculations also show an asymmetry between even
and odd resonances that is not observed experimentally. The authors invoke inhomogeneous
broadening to smooth their multiresonant results into a single peak [97]. Aside from their other
limitations, since no inhomogeneous broadening was found experimentally (Fig. 12), these
theories do not quantitatively explain the data.

Fort et al. [98] have offered a calculation of the resonance line shape that fits experimental
data for the zero-field resonance reasonably well. Their calculation is based on the assumption
that the tunneling is driven only by a fourth-order transverse anisotropy. As the authors note, this
approach fails to account for the presence of the odd resonances. The new feature in their theory
is the inclusion of second-order spin-phonon transitions. However, the second-order coupling
constants 1g  and 2g  are treated as fitting parameters. Leuenberger and Loss [77, 78] attempted
to redress this deficit by explicitly calculating one and estimating the other of these constants.
With only one fitting parameter (the speed of sound), they were able to reasonably reproduce the
relaxation rate, the shape and the width of the resonances. However, Chudnovsky and Garanin
[100] have pointed out that the Leuenberger and Loss’ derivation of the second-order spin-
phonon coupling constants is erroneous. While conceding their mistake, Leuenberger and Loss
argue [101] that their calculation of 1g  and 2g  nevertheless gives a reasonable estimate of these
constants. Despite its flaws, Leuenberger and Loss’ theory does appear to explain the measured
line width of the resonances in Fig. 12. Although the data can be fit well by a Lorentzian, their
theory predicts that the peak’s width does not directly correspond to a level’s lifetime. This is
because the measurements only probe the tails of the levels’ densities of states: At large values of
bias ,m mE ′ , the ratio 1mr <  and the bottleneck in the relaxation process is tunneling from m  to

m′  . However, when ,m mE ′  becomes small enough so that 1mr > , the relaxation bottleneck is

thermal activation, which does not depend on the level’s density of states. Thus, the observed line
width cannot be simply equated with one specific microscopic time scale (inverse tunneling rate,
level lifetime, etc.). In a recent calculation, Pohjola and Schoeller [99] obtain similar results to
Leuenberger and Loss; but they argue that the width of the resonance peak represents the tunnel
splitting.
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Three of the above theoretical treatments [78, 96, 99] predict that the relaxation rate as a
function of H should show very narrow satellite peaks next to the each of the main resonance
peaks for 0n ≠ . These satellite peaks are due to the fact (Eq. (3)) that for the same value of n
different pairs of levels come into resonance at slightly different values of magnetic field. So,
they represent tunneling through levels higher or lower than the dominant tunneling level pair.
Most of the predicted satellite peaks are too narrow to be measured in realistic experiments.
Nevertheless, in the thermally assisted tunneling regime some experiments [102] have seen extra
peaks over a narrow range of temperature that agree qualitatively with the predictions. However,
no quantitative explanation of the data currently exists. Another manifestation of this effect is
seen in the crossover between thermally activated and pure quantum tunneling that I will discuss
in Section IV.B.

At this point there seem to be two major obstacles to obtaining a detailed theoretical
understanding of thermally assisted resonant tunneling process in Mn12. The first is that it appears
that the first-order spin-phonon transitions alone cannot explain the data. However, there are no
first-principles calculations of the second-order coupling constants 1g  and 2g , and no
measurements of them either. The second obstacle is that the transition rate depends crucially on
the fourth-order transverse anisotropy, Eq. (4). The magnitude of the anisotropy parameter C has
been estimated from high-field ESR [10] and inelastic-neutron-scattering (INS) [13] experiments.
However, some recent high-resolution INS experiments [14, 103] have found that the magnitude
of C may be as small as zero. A precise determination of this crucial parameter is essential for
further progress.

There have been some theories that have attempted to explain the relaxation of Mn12 in terms
of mechanisms other than tunneling. Burin, Prokof'ev and Stamp [104] have suggested that the
relaxation can occur via dipolar flip-flop processes. This possibility has now been obviated by the
aforementioned experiments that show that the resonant phenomenon is substantially unchanged
when the molecules are dispersed in a glassy matrix and thereby have negligible dipole
interactions [82]. Garg [105] has suggested that the relaxation may be due to a lattice distortion
that occurs when levels are near resonance. This theory applies only to levels 1m =  and

1m = −  and predicts that the effective barrier is reduced on resonance by about 10 mK, in

contrast to the ac-susceptibility experiments that indicate that the barrier is reduced by as much as
12 K [62, 63].

III.D. Effects of Dipole and Hyperfine Fields; Hole-digging experiments

The Lorentzian line shape of the data in Fig. 12 indicates that the thermally assisted tunneling
process is not inhomogeneously broadened by hyperfine fields, initially estimated to be 300 – 500
Oe [89]. So, where are the hyperfine fields? One possible resolution to this puzzle is offered by
hole-digging experiments by Wernsdorfer et al. [106-108]. Before going into the details of these
experiments, it is necessary to discuss the role of dipolar fields in the relaxation. I have mentioned
already that dipole fields in Mn12 are too weak to provide the transverse fields necessary to
produce tunneling. However, as noted in the discussion of Fig. 3, the dipolar interactions between
molecules can have an effect on the relaxation because the field that any individual molecule sees
comprises both the external field and the dipolar field due to all of its neighbors in the sample.
Thus, for example, as a sample relaxes from some initial magnetization to its equilibrium
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magnetization, the field the sample experiences is constantly evolving. A sample initially tuned to
a resonant field may relax to the point where the mean field takes most of the molecules off
resonance. This effect may be partially responsible for the non-exponential relaxation observed in
Fig. 7. In fact, it has been checked by adding an oscillating component to the applied field with an
amplitude larger than the resonance width [66]. The system is thus repeatedly brought back to the
resonance condition, producing an overall increase in the relaxation rate compared to when the
field is static.

Thomas et al. have reported [109] nonexponential relaxation for T > 2.0 K that they attribute
to the fact that the mean dipolar field varies as the system relaxes. Their data, however, may also
reflect the presence of a second species of Mn12 that relaxes faster (see below). The effect of
dipolar fields on the relaxation of Fe8 at milliKelvin temperatures has been studied by Ohm et al
[110]. They found that the observed nonexponential relaxation in that system could be
quantitatively explained using a simple model in which the distribution of dipole fields widens
with time. Prokof’ev and Stamp [93, 94] have considered theoretically the role hyperfine and
dipole fields play in the dynamics at low temperatures, where the relaxation proceeds exclusively
via ground-state tunneling. Since the ground-state tunnel splitting is so small, the intrinsic
resonance width is extremely narrow and any small longitudinal field will take a given molecule
off of resonance, blocking the relaxation. In their model, each molecule sees both a small, rapidly
varying hyperfine field and a quasistatic dipole field due to its neighbors. For a fraction of the
molecules the net dipole field will happen to be small enough that the fluctuating hyperfine fields
can sweep it through the resonance condition, allowing it to tunnel. Once it has tunneled, it alters
the dipole fields seen by its neighbors, allowing some of them to tunnel, etc. Analyzing this
process for a sample of ellipsoidal shape, they found that the magnetization of the sample should
relax as t for short times t. It has been noted that t form of the relaxation does not actually
require the presence of fluctuating fields [111] (see also [112, 113]). For other sample shapes, the
precise form of the relaxation may be quite complicated, as has been investigated with Monte
Carlo calculations [114]. Nevertheless, it has been found experimentally that at low temperatures
and short times the relaxation for both Mn12 and Fe8 follows tα  behavior with 0.3 0.5α ≈ −
[106-108, 110, 113, 115].

The low-temperature relaxation in Mn12 is complicated by the existence of a second (minor)
species of Mn12, sometimes referred to as Mn12 (2). This minority species appears to be a
distorted form of the majority Mn12 molecule and is randomly dispersed in the crystal [106, 116-
118]. The resulting lower symmetry of the minority species results in a smaller effective energy
barrier and concomitant faster relaxation rate. At low temperatures (T < 1 K), the primary species
of Mn12 is completely frozen and only the relaxation of Mn12 (2) can be observed [106]. By
measuring the slope of the short-time relaxation as a function of t , Wernsdorfer et al. [106]
determined a characteristic relaxation rate sqrtΓ , which is plotted as a function of external field in

Fig. 14a (open circles). This data represents the distribution of dipole fields seen by the Mn12 (2)
molecules. Wernsdorfer et al. proceeded to dig a hole in this distribution through the following
procedure. The system was cooled from 5 K to T < 1 K in zero field; then, a “hole-digging” field

digH (arrow in Fig. 14a) was applied and the system was allowed to relax at this field for a time

digt . During this time only those molecules that are near resonance at digH  can tunnel. The field

was then changed to a different value H and sqrtΓ (H) was measured. This procedure was repeated
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for several values of H to give each curve in Fig. 14a. One sees immediately that a hole has been
dug into the distribution of dipole fields. This hole distribution is plotted in Fig. 14b. Wernsdorfer
et al. found that the width of the hole becomes temperature independent below 400 mK and is
approximately constant for digt <  10 s. Under these circumstances, the hole has a width of ~120

G.
They interpret this minimum width as a reflection of the distribution of the hyperfine fields.

That is, depleting the distribution at digH  can only affect the distribution at H only if

dig hyperfineH H H− ≤ . Following an analysis by Hartmann-Boutron et al. [89], they estimated

that the hyperfine fields should have Gaussian full width of ~160 G, consistent with the measured
hole width. Wernsdorfer et al. repeated their hole-digging procedure at high temperature (2 K),
where the measured relaxation is dominated by the primary Mn12 species reversing via a
thermally assisted process, and obtained a Lorentzian line shape, as in Fig. 12. However, they
were unable to dig a hole into the high-temperature relaxation-rate distribution, indicating that
high-temperature line shape does not represent the distribution of dipole fields, but rather has a
dynamical significance. That is, it most likely reflects some aspect of the thermally assisted
tunneling process, as discussed in the last subsection. Also, the fact that the resonance width
found in that data is about twice the hole width may explain why no inhomogeneous broadening
was found: such a small amount of hyperfine inhomogeneous broadening would not be
discernable in the data shown in Fig. 12. It should be noted that the presence of rapidly
fluctuating hyperfine fields at the mK temperatures of the hole-digging experiments is surprising.
Proton NMR and µSR experiments [119, 120] suggest that the T1 (longitudinal) relaxation time in
Mn12 becomes exponentially slow at low temperature, comparable to the time for a phonon to be
absorbed by the molecular spin. While the T2 (transverse) relaxation time may be significantly
faster, it is not entirely clear how such T2 processes would alter the longitudinal field seen by the
molecular spin.

Nevertheless, isotope effects provide evidence that the hole width is related to hyperfine
fields. In Mn12, one cannot readily investigate such isotope effects because there is only one
stable isotope of Mn (with nuclear spin I = 5/2), which is undoubtedly the primary source of
hyperfine fields seen by the molecule. In Fe8, however, the situation is quite different, with 90%
of Fe nuclei (56Fe) having zero nuclear spin. Wernsdorfer et al. [107, 108] performed hole-digging
experiments on Fe8 and obtained qualitatively similar results to those in Mn12. They studied three
isotopically distinct samples of Fe8: one with natural isotopic abundances, one enriched with 57Fe
(I = ½) that is expected to have larger hyperfine fields, and one in which the hyperfine fields are
reduced by the substitution of deuterons for most of the protons. The measured hole widths
confirm that the hole represents the hyperfine fields, with the 57Fe-enriched sample having the
largest hole width and the deuterated sample having the smallest. Another related effect is the
observation [108, 121] that the tunneling rate appears to be somewhat faster for the 57Fe-enriched
sample and slower for the deuterated sample, as might be expected if the transverse hyperfine
fields are to some degree helping to produce tunneling. If the observed isotope effect were not
related to the hyperfine fields but rather the difference in nuclear mass, one would expect both
isotopically modified samples to behave similarly since the nuclear masses in both are larger than
in the natural sample.
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(a)

(b)

Figure 14 Hole-digging data for Mn12 at T = 0.04 K. (a) Square-root relaxation rate sqrtΓ as a

function of field H after the sample was first allowed to relax for a time digt  at the field shown by

the arrow. For 0digt >  a hole is dug into the curve. The hole, shown in (b), is interpreted as

representing the fluctuating-hyperfine-field distribution. Reprinted with permission from W.
Wernsdorfer, R. Sessoli and D. Gatteschi, Europhys. Lett. 47, 254 (1999). Copyright 1999 EDP
Sciences.
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Figure 15 Measured tunnel splitting of Fe8 as a function of the field xH  applied along the spin’s

hard axis. The tunnel splitting is reduced at the values of xH  for which the two minimal
tunneling paths interfere destructively. Reprinted with permission from W. Wernsdorfer and R.
Sessoli, Science 284, 133 (1999). Copyright 1999 American Association for the Advancement of
Science.

Let us summarize the main results of this section. First, because none of the tunneling
resonances in Mn12 are missing or reduced, we can conclude that a selection rule has been
violated and that the tunneling must by driven by a transverse magnetic field, most probably
hyperfine fields. An externally applied transverse field does seem to augment the relaxation, but
in a way that is not inconsistent with classical effects. A detailed study of the line shape of the
zero-field resonance found no evidence of inhomogeneous broadening from a static hyperfine
field distribution. Despite much theoretical work to understand the thermally assisted relaxation
in Mn12, the detailed dynamics are not yet understood, although it is clear that first-order spin-
phonon coupling terms are not sufficient to explain the data. Finally, the hole-digging
experiments have elucidated the role of hyperfine fields in the low-temperature relaxation.

IV. RECENT RESULTS

I will conclude this chapter by summarizing some of the most interesting recent experimental
results found in the molecular magnets. In the beginning of this section I will discuss the
quantum-phase-interference experiments of Wernsdorfer and Sessoli in which tunneling could be
suppressed by the application of a transverse magnetic field. I will then briefly discuss the
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observations of coherent quantum tunneling and of a “first-order” transition between thermally
assisted tunneling and purely quantum tunneling.

IV.A. Quantum phase interference

The quantum-phase-interference phenomenon found by Wernsdorfer and Sessoli [121-123] is
an example of a geometric-phase (Berry-phase) effect in which two tunneling paths interfere. The
theory of this phenomenon is discussed in detail in Garg’s contribution to this book. I will only
briefly review the essential aspects here.

Let us consider the spin Hamiltonian

2 2 2( )z x yDS E S S= − + −H , (12)

where D > E > 0. The spin then has easy (z), medium (y) and hard (x) axes. If the spin is pointing
along the z axis, it has two possible least-action tunneling (instanton) paths for reversal: one in
which it passes through the positive y axis and one in which it passes through the negative y axis.
The real part of the actions for these paths are equal, but for a spin S each path picks up a
different geometric phase of

( )1 cosS dθ φ−∫ , (13)

where θ  and φ  are the usual polar and azimuthal angles, respectively, and the integral is taken
over the instanton path. The path-dependent geometric phase leads to interference between the
paths. The interference is completely destructive for half-integer S, leading to a complete
suppression of tunneling in accordance with Kramers’ theorem [124, 125].

It was pointed out by Garg [126, 127] that such a geometric-phase interference effect could
be controlled by a transverse magnetic field with the tunnel splitting going to zero at regular
intervals of field. This is a somewhat counterintuitive result since, as discussed in the last section,
a transverse field tends to lower the classical energy barrier and hence increase tunneling.
However, it should be noted that the effect is only possible if the field is oriented very nearly
along the hard (x) axis. In that case, the Hamiltonian, Eq. (12), gains a term B x xg S Hµ− , which
moves the energy minima away from the poles and slightly towards the hard axis. The instanton
paths no longer pass through the y axis. However, the symmetry between the two paths remains
intact with each having the same real component to the instanton action, but a different geometric
phase. Again, the paths can interfere, producing a tunnel splitting that is modulated by the factor
cos( )SΘ , where Θ  is the solid angle on the Bloch sphere circumscribed by the two paths. As
the magnitude of the field is increased, Θ  decreases and the tunnel splitting oscillates. Garg
predicted that the tunnel splitting should go to zero at regular intervals of magnetic field with a
period given by

2 2 ( )
B

H E E D
gµ

∆ = + . (14)
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Since Garg’s original work, several other researchers have studied this effect theoretically [99,
128-136].

Before reviewing the experiments of Wernsdorfer and Sessoli that confirmed the geometric-
phase interference effect, I will briefly discuss the features of the Fe8 molecule that distinguish it
from Mn12. The chemical formula for Fe8 is (Fe8O2(OH)12(tacn)6)Br8, where tacn is 1,4,7-
triazacyclononane, an organic ligand. Like Mn12, the Fe8 cluster has a spin of 10 [137]. It has a
magnetocrystalline anisotropy barrier of ~22 K [137] and shows resonant tunneling effects (steps
in the hysteresis loops) [138]. The system crystallizes into a triclinic lattice and thus has no non-
trivial symmetry [137]. Nevertheless, the Fe core of the cluster has an approximate D2 symmetry
and the spin of the cluster has been found to be well described by Eq. (12) with D = -0.27 K and
E = -0.046 K. (Like Mn12, the Fe8 Hamiltonian also contains fourth-order anisotropy terms, which
do not affect the essential physics of the geometric-phase interference, but only some of the
details.) As we have seen in Section III, in Mn12, the off-diagonal terms in the Hamiltonian (those
that do not commute with Sz) are small and have yet to be precisely pinned down. In Fe8,
however, the low symmetry allows for a substantial second-order transverse anisotropy term (the
second term in Eq. (12)). This term is easily detected in ESR [76, 137] and INS [75] experiments,
which yield an unambiguous value for E. Thus, “what causes tunneling” is pretty well understood
for this system, although, as we shall see below, a transverse magnetic field must also be playing
some role in the tunneling. The relatively large transverse anisotropy and small barrier allow
tunneling from the ground state, so that at temperatures below 0.36 K this is the only mechanism
for relaxation at all fields [138]. In contrast, as we have seen, in Mn12 tunneling is usually
thermally assisted and occurs from excited states. (Ground-state tunneling can be seen in Mn12 at
high magnetic fields – see below.)

In their experiments, Wernsdorfer and Sessoli [121-123] deduced the tunnel splitting for a
particular resonance using a Landau-Zener tunneling method. Let us consider a system prepared
in the 10m = −  state in a small negative field. If the field is then swept at a constant rate to a

small positive value, this state will pass through resonance with 10m = . The probability of

tunneling into the 10m =  state during this process is given by

2
10,10

10,10 1 exp( )
4 /B

P
g SdH dt
π
µ

−
−

∆
= − −

h
, (15)

where 10,10−∆  is the tunnel splitting between the two states (or, more properly, between the

symmetric and antisymmetric superposition states). Similar expressions apply for other
resonances, e.g. 10m = −  and 9m = . Now, this probability is simply proportional to the

change in magnetization, i.e. the height of the step in the hysteresis loop. Thus, by measuring the
height of a step∗ and knowing the field sweep rate dH/dt, Eq. (15) allows one to determine the
tunnel splitting 10,10−∆  (or 10,10 n− −∆  for other resonances). Wernsdorfer et al. [121, 123] checked

                                                     
∗ In cases where the probability of tunneling P  during a single sweep through the resonance was too small to measure,

Wernsdorfer and Sessoli made multiple back-and-forth sweeps. The resulting transition probability NP  after N

sweeps is then NP NP= .
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the validity of Eq. (15) as dH/dt was varied over several decades and found that it works when
dH/dt > 10 Oe/s.

Using this method to determine the tunnel splitting ∆  for each resonance, Wernsdorfer and
Sessoli measured ∆  as a function of transverse field xH . The results, plotted in Fig. 15, show

unmistakable oscillations ∆  at three resonances n = 0, 1, 2. The tunnel splitting drops by nearly
an order of magnitude at regular field intervals of 0.41 T. While this is qualitatively what is
predicted by Eq. (14), it is nearly a factor of two larger than the numerical value derived from the
equation. Wernsdorfer and Sessoli found that the measured field interval could be explained by
including a transverse anisotropy term, i.e. Eq. (4), in the spin Hamiltonian for Fe8.

One interesting feature of the data in Fig. 15 is that the odd resonance (n = 1) is out of phase
with the even resonances (n = 0, 2). In particular, when 0xH = , the tunnel splittings of the even
resonances have maxima while the tunnel splitting of the odd resonance has a minimum. This is
precisely the selection rule discussed in Section III.A that in the absence of a transverse field the
odd resonances are forbidden. Why then is the tunnel splitting at n = 1 not much smaller? As in
Mn12, the presence of a small transverse field would lift the selection rule. In Fe8 the hyperfine
fields are much smaller than in Mn12, but the dipole coupling between neighboring molecules is
much larger, making the latter the likely source of the transverse field. Wernsdorfer et al. [121]
showed that this is indeed the case by studying how ∆  near the dip depends on the initial
magnetization inM  of the sample. They found that as inM  is increased toward saturation, the dip

gets sharper and deeper. For example, the tunnel splitting for the n = 1 resonance at 0xH =  is

about a factor of four smaller when 0.098in satM M=  than when 0inM = . This is consistent
with the idea that the dipole fields are the source of the transverse field since when the sample is
near saturation, the “down” (unflipped) molecules see a nearly homogeneous longitudinal dipole
field from all of “up” molecules. When 0inM = , on the other hand, each “down” spin sees a
random field from its neighbors that can have a substantial transverse component.

Thus, in these few experiments on the geometric-phase in Fe8, one can also see two
additional interesting effects: the selection-rule suppression of tunneling (or “parity effect”) and
the effect of dipole fields on the tunnel splitting.

IV.B. Other recent results: Coherence and “First-order” transition

Some other recent results in the molecular magnets include the observation of quantum
coherent tunneling and the discovery of a so-called “first-order” transition between thermally
assisted tunneling and pure ground-state tunneling.

All of the tunneling phenomena presented thus far in this chapter have been incoherent: the
system tunnels through the barrier and does not come back. This is because the relevant tunnel
splitting ∆  is usually small compared to the decoherence rate γ , e.g. the spin-phonon relaxation
rate. Coherent tunneling occurs in the opposite limit when the decoherence rate is small and the
system can then tunnel back and forth between the two wells such that probability of being found
in, say, the left well varies as cos( / )t∆ h . Equivalently, coherence means that the system can be
put into a superposition of states on opposite sides of the barrier, e.g.
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1
2

( 10 10 )m m± = = ± = − ; the energy difference between these two superposition states is

the tunnel splitting 10,10−∆ . For both Mn12 and Fe8, this ground-state tunnel splitting is normally

extremely small (cf. Fig. 14), leading to incoherent tunneling. But the ground-state tunneling can
be augmented by applying a transverse magnetic field, as in the experiments discussed in Section
III.B.

By applying a large transverse magnetic field to an oriented-powder sample of Fe8, del Barco
et al. [139] were able to increase the tunnel splitting of the ground state to the radio frequency
range, enabling them to detect it directly via an ESR experiment. A subsequent experiment by
Bellesa et al. [140] found a similar effect in Mn12. In both experiments, the position of the
detected spectral peaks could be predicted from the relevant spin Hamiltonian with no adjustable
parameters. The trick in these experiments was the use of a powdered sample. In order to observe
the coherent state, the magnetic field must be nearly perfectly perpendicular to the molecule’s
easy axis. A small longitudinal component to the field will tilt the potential and localize the two
states in different wells with negligible coupling between them. This difficulty is overcome by
using a powdered sample: most of the molecules will be misaligned with the field, but they will
contribute no signal; only the small fraction for which the field is nearly perpendicular will
exhibit a resonance signal.

Another aspect of ground-state tunneling is the question of how, as temperature is lowered, a
system makes a transition between thermally assisted tunneling and pure quantum tunneling.
Chudnovsky [141] predicted theoretically that the crossover could either be a sudden, “first-
order” or a smooth, “second-order” transition, depending on the curvature of the potential barrier.
Most tunneling systems of experimental interest, such as the SQUID system discussed in Han’s
chapter, have a potential shape that always gives rise to a second-order transition. Chudnovsky
and Garanin [87, 142] showed that a uniaxial spin, such as Mn12, can have a first-order transition,
and, furthermore, the transition can be made second order by the application of a suitably large
transverse magnetic field. Many aspects of this effect have been explored theoretically since this
prediction [143-151].

A simple way to understand the meaning of a first-order transition is to return to the analysis
in Section III.C of the thermally assisted tunneling process. There I argued that for any given
temperature, there is almost always one pair of tunneling levels that dominates the relaxation
process, the lowest pair for which 1mr <  (see Eq. (11)). As the temperature is lowered, the
dominant pair will fall from one pair of levels to a pair below it and eventually, at very low
temperatures, tunneling will only occur from the ground state. If this process of climbing down
the ladder of levels occurs smoothly from one pair to the next (i.e. from m = 8 to 9 to 10) as the
temperature is lowered, then it is a second-order transition. However, if some of the lowest levels
are rapidly skipped (i.e. going directly from m = 8 to 10), then the transition to ground-state
tunneling is first order.

This signature of skipping levels is exactly what was found by Kent et al. [152, 153] in
studying Mn12 at large values of n (= 5 – 9), where the potential is significantly tilted and barrier
reduced. They could identify which levels participated in the tunneling because for a given value
of n, the resonance field, Eq. (3), depends on values of m and m’ because of the presence of the
fourth-order anisotropy. As the temperature was lowered, they found that the field at which a step
occurs in the hysteresis loop increases smoothly but then makes a sudden jump at T ≈ 1.0K when
the system crosses over to ground-state tunneling. A careful analysis, as well as some detailed
subsequent work by Mertes et al. [154], shows that this sudden jump corresponds to a transition
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from thermally assisted tunneling from m = 8 to ground-state tunneling from m = 10, skipping m
= 9. At temperatures below this crossover, both the position of the resonant step and the
relaxation rate are temperature independent, confirming that tunneling is occurring from the
ground state.

By applying a transverse field, Bokacheva et al. [155] were able to smooth out the crossover
to ground-state tunneling, i.e. making it a second-order transition, in qualitative accord with the
predictions of Chudnovsky and Garanin [142]. Interestingly, another group [156] simultaneously
published an experimental report in which they claim that the transition is always second order.
The discrepancy has not been explained. Another interesting result is that Fe8, in contrast to Mn12,
seems to exhibit a smooth, second-order transition to ground-state tunneling [123]. This fact
appears to be related to the existence of a second-order transverse anisotropy in the molecule’s
spin Hamiltonian, Eq. (12), and has been addressed theoretically [157].

V. SUMMARY AND OUTLOOK

I began this chapter by noting that spin systems are significantly different from other
tunneling systems. I hope the reader has found that the molecular magnets exhibit a rich set of
phenomena, from resonant tunneling to geometric-phase interference, and raise some interesting
fundamental questions, like “What causes tunneling?”, that exemplify the uniqueness of
magnetization tunneling.

I want to emphasize that, while much is known about the relaxation process in the molecular
magnets, many details still remain to be discerned. Some of the outstanding questions include the
nature of the spin-phonon interaction, the role of hyperfine and dipole fields, and how the
dominant tunneling pair changes as temperature or transverse magnetic field are varied. All of
these questions have been addressed to some degree or another and there is no doubt that further
progress is to come.
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Myriam Sarachik, Eugene Chudnovsky, Javier Tejada, Ron Ziolo, Joan Manel Hernández,
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Bao, Sheila Aubin and Dave Hendrickson. I am also indebted to Wolfgang Wernsdorfer, Roberta
Sessoli, Daniel Loss, Nikolay Prokof’ev, Philip Stamp for useful discussions about their work.
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REFERENCES

[1] H. Grabert and U. Weiss, Phys. Rev. Lett. 53, 1787 (1984).
[2] U. Weiss, H. Grabert and S. Linkwitz, J. Low Temp. Phys. 68, 213 (1987).
[3] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg and W. Zwerger,

Rev. Mod. Phys. 59, 1 (1987).
[4] J. R. Friedman, M. P. Sarachik, J. Tejada, J. Maciejewski and R. Ziolo, J. Appl. Phys. 79,

6031 (1996).
[5] J. R. Friedman, M. P. Sarachik, J. Tejada and R. Ziolo, Phys. Rev. Lett. 76, 3830 (1996).



Jonathan R. Friedman214

[6] J. M. Hernández, X. X. Zhang, F. Luis, J. Tejada, J. R. Friedman, M. P. Sarachik and R.
Ziolo, Phys. Rev. B 55, 5858 (1997).

[7] J. R. Friedman, Ph.D. thesis (The City University of New York, New York, 1996).
[8] A. Caneschi, D. Gatteschi, C. Sangregorio, R. Sessoli, L. Sorace, A. Cornia, M. A.

Novak, C. Paulsen and W. Wernsdorfer, J. Magn. Magn. Mat. 200, 182 (1999).
[9] B. Barbara, L. Thomas, F. Lionti, I. Chiorescu and A. Sulpice, J. Magn. Magn. Mat. 200,

167 (1999).
[10] A. L. Barra, D. Gatteschi and R. Sessoli, Phys. Rev. B 56, 8192 (1997).
[11] S. Hill, J. A. A. J. Perenboom, N. S. Dalal, T. Hathaway, T. Stalcup and J. S. Brooks,

Phys. Rev. Lett. 80, 2453 (1998).
[12] A. A. Mukhin, V. D. Travkin, A. K. Zvezdin, S. P. Lebedev, A. Caneschi and D.

Gatteschi, Europhys. Lett. 44, 778 (1998).
[13] I. Mirebeau, M. Hennion, H. Casalta, H. Andres, H. U. Güdel, A. V. Irodova and A.

Caneschi, Phys. Rev. Lett. 83, 628 (1999).
[14] W. Bao, R. A. Robinson, J. R. Friedman, H. Casalta, E. Rumberger and D. N.

Hendrickson, cond-mat/0008042 (2000).
[15] A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211 (1981).
[16] A. O. Caldeira and A. J. Leggett, Ann. Phys. (N.Y.) 149, 374 (1983).
[17] J. Clarke, A. N. Cleland, M. H. Devoret, D. Esteve and J. M. Martinis, Science 239, 992

(1988).
[18] C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 120S (1959).
[19] T. Egami, Phys. Status Solidi A 20, 157 (1973).
[20] B. Barbara, G. Fillion, D. Gignoux and R. Lemaire, Solid State Comm. 10, 1149 (1973).
[21] O. Bostanjoglo and H. P. Gemund, Phys. Status Solidi A 17, 115 (1973).
[22] O. Bostanjoglo and H. P. Gemund, Phys. Status Solidi A 48, 41 (1978).
[23] J. A. Baldwin, F. Milstein, R. C. Wong and J. L. West, J. Appl. Phys. 48, 2612 (1977).
[24] W. Reihemann and E. Nembach, J. Appl. Phys. 55, 1081 (1984).
[25] W. Reihemann and E. Nembach, J. Appl. Phys. 57, 476 (1986).
[26] M. Enz and R. Schilling, J. Phys. C: Solid State Phys. 19, 1765 (1986).
[27] J. L. van Hemmen and A. Süto, Europhys. Lett. 1, 481 (1986).
[28] E. M. Chudnovsky and L. Gunther, Phys. Rev. Lett. 60, 661 (1988).
[29] P. C. E. Stamp, E. M. Chudnovsky and B. Barbara, Int. J. Mod. Phys. B 6, 1355 (1992).
[30] R. Schilling, in Quantum Tunneling of Magnetization, edited by L. Gunther and B.

Barbara (Kluwer, Amsterdam, 1995).
[31] J. L. van Hemmen and A. Süto, in Quantum Tunneling of Magnetization, edited by L.

Gunther and B. Barbara (Kluwer, Amsterdam, 1995).
[32] E. M. Chudnovsky and J. Tejada, Macroscopic Quantum Tunneling of the Magnetic

Moment (Cambridge University Press, Cambridge, 1998).
[33] A. Garg and G. H. Kim, Phys. Rev. Lett. 63, 2512 (1989).
[34] A. Garg and G. H. Kim, J. Appl. Phys. 67, 5669 (1990).
[35] B. Barbara, L. C. Sampaio, J. E. Wegrowe, B. A. Ratnam, A. Marchand, C. Paulsen, M.

A. Novak, J. L. Tholence, M. Uehara and D. Fruchart, J. Appl. Phys. 73, 6703 (1993).
[36] B. Barbara, W. Wernsdorfer, L. C. Sampaio, J. G. Park, C. Paulsen, M. A. Novak, R.

Ferré, D. Mailly, R. Sessoli, A. Caneschi, K. Hasselbach, A. Benoit and L. Thomas, J.
Magn. Magn. Mater. 140-144, 1825 (1995).

[37] J. Tejada and X. X. Zhang, J. Appl. Phys. 73, 6709 (1995).



Resonant Magnetization Tunneling in Molecular Magnets 215

[38] D. D. Awschalom, D. P. DiVincenzo and J. F. Smyth, Science 258, 414 (1992).
[39] E. M. Chudnovsky, Science 274, 938 (1996).
[40] A. Garg, Phys. Rev. Lett. 70, 2198 (1993).
[41] D. D. Awschalom, J. F. Smyth, G. Grinstein, D. P. DiVincenzo and D. Loss, Phys. Rev.

Lett. 70, 2199 (1993).
[42] A. Garg, Phys. Rev. Lett. 71, 4249 (1993).
[43] D. D. Awschalom, D. P. DiVincenzo, G. Grinstein and D. Loss, Phys. Rev. Lett. 71

(1993).
[44] J. Tejada, Science 272, 424 (1996).
[45] T. Lis, Acta Cryst. B 36, 2042 (1980).
[46] C. Paulsen, J.-G. Park, B. Barbara, R. Sessoli and A. Caneschi, J. Magn. Magn. Mater.

140-144, 379 (1995).
[47] M. A. Novak, R. Sessoli, A. Caneschi and D. Gatteschi, J. Magn. Magn. Mater. 146, 211

(1995).
[48] M. A. Novak and R. Sessoli, in Quantum Tunneling of Magnetization, edited by L.

Gunther and B. Barbara (Kluwer, Dordrecht, 1995), p. 171.
[49] C. Paulsen and J.-G. Park, in Quantum Tunneling of Magnetization, edited by L. Gunther

and B. Barbara (Kluwer, Dordrecht, 1995), p. 189.
[50] M. Hennion, L. Pardi, I. Mirebeau, E. Suard, R. Sessoli and A. Caneschi, Phys. Rev. B

56, 8819 (1997).
[51] M. I. Katsnelson, V. V. Dobrovitski and B. N. Harmon, Phys. Rev. B 59, 6919 (1999).
[52] M. I. Katsnelson, V. V. Dobrovitski and B. N. Harmon, J. Appl. Phys. 85, 4533 (1999).
[53] M. Al-Saqer, V. V. Dobrovitski, B. N. Harmon and M. I. Katsnelson, J. Appl. Phys. 87,

6268 (2000).
[54] A. Caneschi, D. Gatteschi, R. Sessoli, A. L. Barra, L. C. Brunel and M. Guillot, J. Am.

Chem. Soc. 113, 5873 (1991).
[55] R. Sessoli, H.-L. Tsai, A. R. Schake, S. Wang, J. B. Vincent, K. Folting, D. Gatteschi, G.

Christou and D. N. Hendrickson, J. Am. Chem. Soc. 115, 1804 (1993).
[56] J. Villain, F. Hartmann-Boutron, R. Sessoli and A. Rettori, Europhys. Lett. 27, 159

(1994).
[57] R. A. Robinson, P. J. Brown, D. N. Argyriou, D. N. Hendrickson and S. M. J. Aubin, J.

Phys. - Condens. Mat. 12, 2805 (2000).
[58] Z. Zeng, D. Guenzburger and D. E. Ellis, Phys. Rev. B 59, 6927 (1999).
[59] R. Sessoli, D. Gatteschi, A. Caneschi and M. A. Novak, Nature 365, 141 (1993).
[60] R. Sessoli, Mol. Cryst. Liq. Cryst. 274, A 145 (1995).
[61] H. J. Eppley, S. M. J. Aubin, M. W. Wemple, D. M. Adams, H. L. Tsai, V. A. Grillo, S. L.

Castro, Z. M. Sun, K. Folting, J. C. Huffman, D. N. Hendrickson and G. Christou, Mol.
Cryst. Liq. Cryst. Sci. Technol. Sect. A-Mol. Cryst. Liq. Cryst. 305, 167 (1997).

[62] A. M. Gomes, M. A. Novak, R. Sessoli, A. Caneschi and D. Gatteschi, Phys. Rev. B 57,
5021 (1998).

[63] F. Luis, J. Bartolomé, J. F. Fernández, J. Tejada, J. M. Hernández, X. X. Zhang and R.
Ziolo, Phys. Rev. B 55, 11448 (1997).

[64] J. M. Hernández, X. X. Zhang, F. Luis, J. Bartolomé, J. Tejada and R. Ziolo, Europhys.
Lett. 35, 301 (1996).

[65] L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli and B. Barbara, Nature 383, 145
(1996).



Jonathan R. Friedman216

[66] J. A. A. J. Perenboom, J. S. Brooks, S. Hill, T. Hathaway and N. S. Dalal, Phys. Rev. B
58, 330 (1998).

[67] F. Fominaya, J. Villain, P. Gandit, J. Chaussy and A. Caneschi, Phys. Rev. Lett. 79, 1126
(1997).

[68] J. F. Fernández, F. Luis and J. Bartolomé, Phys. Rev. Lett. 80, 5659 (1998).
[69] M. Sales, J. M. Hernández, J. Tejada and J. L. Martínez, Phys. Rev. B 60, 14557 (1999).
[70] Z. H. Jang, A. Lascialfari, F. Borsa and D. Gatteschi, Phys. Rev. Lett. 84, 2977 (2000).
[71] R. Sessoli, private communication (1998).
[72] J. R. Friedman, unpublished (1998).
[73] S. Foner, private communication (1996).
[74] Y. C. Zhong, M. P. Sarachik, J. R. Friedman, R. A. Robinson, T. M. Kelley, H. Nakotte,

A. C. Christianson, F. Trouw, S. M. J. Aubin and D. N. Hendrickson, J. Appl. Phys. 85,
5636 (1999).

[75] R. Caciuffo, C. Amoretti, A. Murani, R. Sessoli, A. Caneschi and D. Gatteschi, Phys.
Rev. Lett. 81, 4744 (1998).

[76] A. L. Barra, D. Gatteschi and R. Sessoli, Chem. Eur. J. 6, 1608 (2000).
[77] M. N. Leuenberger and D. Loss, Europhys. Lett. 46, 692 (1999).
[78] M. N. Leuenberger and D. Loss, Phys. Rev. B 61, 1286 (2000).
[79] S. M. J. Aubin, N. R. Dilley, M. W. Wemple, M. B. Maple, G. Christou and D. N.

Hendrickson, J. Am. Chem. Soc. 120, 839 (1998).
[80] S. M. J. Aubin, Z. Sun, L. Pardi, J. Krzystek, K. Folting, L.-C. Brunel, A. L. Rheingold,

G. Christou and D. N. Hendrickson, Inorg. Chem. 38, 5329 (1999).
[81] S. M. J. Aubin, N. R. Dilley, L. Pardi, J. Krzystek, M. W. Wemple, L. C. Brunel, M. B.

Maple, G. Christou and D. N. Hendrickson, J. Am. Chem. Soc. 120, 4991 (1998).
[82] A. Caneschi, T. Ohm, C. Paulsen, D. Rovai, C. Sangregorio and R. Sessoli, J. Magn.

Magn. Mater. 177-181, 1330 (1998).
[83] J. R. Friedman, M. P. Sarachik, J. M. Hernández, X. X. Zhang, J. Tejada, E. Molins and

R. Ziolo, J. Appl. Phys. 81, 3978 (1997).
[84] F. Lionti, L. Thomas, R. Ballou, B. Barbara, A. Sulpice, R. Sessoli and D. Gatteschi, J.

Appl. Phys. 81, 4608 (1997).
[85] J. R. Friedman and E. M. Chudnovsky, unpublished (1996).
[86] J. R. Friedman, Phys. Rev. B 57, 10291 (1998).
[87] D. A. Garanin and E. M. Chudnovsky, Phys. Rev. B 56, 11102 (1997).
[88] I. Y. Korenblit and E. F. Shender, Sov. Phys. JETP 48, 937 (1978).
[89] F. Hartmann-Boutron, P. Politi and J. Villain, Int. J. Mod. Phys. 10, 2577 (1996).
[90] J. R. Friedman, M. P. Sarachik and R. Ziolo, Phys. Rev. B 58, R14729 (1998).
[91] V. V. Dobrovitski and A. K. Zvezdin, Europhys. Lett. 38, 377 (1997).
[92] L. Gunther, Europhys. Lett. 39, 1 (1997).
[93] N. V. Prokof'ev and P. C. E. Stamp, J. Low. Temp. Phys. 104, 143 (1996).
[94] N. V. Prokof'ev and P. C. E. Stamp, Phys. Rev. Lett. 80, 5794 (1998).
[95] K. Saito, S. Miyashita and H. D. Raedt, Phys. Rev. B 60, 14553 (1999).
[96] F. Luis, J. Bartolomé and J. F. Fernández, Phys. Rev. B 57, 505 (1998).
[97] J. F. Fernández, J. Bartolomé and F. Luis, J. Appl. Phys. 83, 6940 (1998).
[98] A. Fort, A. Rettori, J. Villain, D. Gatteschi and R. Sessoli, Phys. Rev. Lett. 80, 612

(1998).
[99] T. Pohjola and H. Schoeller, Physical Review B 62, 15026 (2000).



Resonant Magnetization Tunneling in Molecular Magnets 217

[100] G. H. Kim and E. M. Chudnovsky, Europhys. Lett. 52, 681 (2000).
[101] M. N. Leuenberger and D. Loss, Europhys. Lett. 52, 247 (2000).
[102] Y. Zhong, M. P. Sarachik, J. Yoo and D. N. Hendrickson, Physical Review B 62, R9256

(2000).
[103] I. Mirebeau, M. Hennion, H. Casalta, H. Andres, H. U. Güdel, A. V. Irodova and A.

Caneschi, cond-mat/0009233 (2000).
[104] A. L. Burin, N. V. Prokof'ev and P. C. E. Stamp, Phys. Rev. Lett. 76, 3040 (1996).
[105] A. Garg, Phys. Rev. Lett. 81, 1513 (1998).
[106] W. Wernsdorfer, R. Sessoli and D. Gatteschi, Europhys. Lett. 47, 254 (1999).
[107] W. Wernsdorfer, T. Ohm, C. Sangregorio, R. Sessoli, D. Mailly and C. Paulsen, Phys.

Rev. Lett. 82, 3903 (1999).
[108] W. Wernsdorfer, A. Caneschi, R. Sessoli, D. Gatteschi, A. Cornia, V. Villar and C.

Paulsen, Phys. Rev. Lett. 84, 2965 (2000).
[109] L. Thomas, A. Caneschi and B. Barbara, Phys. Rev. Lett. 83, 2398 (1999).
[110] T. Ohm, C. Sangregorio and C. Paulsen, Eur. Phys. J. B. 6, 195 (1998).
[111] E. M. Chudnovsky, Phys. Rev. Lett. 84, 5676 (2000).
[112] N. V. Prokof'ev and P. C. E. Stamp, Phys. Rev. Lett. 84, 5677 (2000).
[113] W. Wernsdorfer, C. Paulsen and R. Sessoli, Phys. Rev. Lett. 84, 5678 (2000).
[114] A. Cuccoli, A. Fort, A. Rettori, E. Adam and J. Villain, Eur. Phys. J. B 12, 39 (1999).
[115] T. Ohm, C. Sangregorio and C. Paulsen, J. Low Temp. Phys. 113, 1141 (1998).
[116] S. M. J. Aubin, Z. Sun, I. A. Guzei, A. L. Rheingold, G. Christou and D. N. Hendrickson,

Chemical Communications, 2239 (1997).
[117] Z. Sun, D. Ruiz, E. Rumberger, C. D. Incarvito, K. Folting, A. L. Rheingold, G. Christou

and D. N. Hendrickson, Inorganic Chemistry 37, 4758 (1998).
[118] Z. Sun, D. Ruiz, N. R. Dilley, M. Soler, J. Ribas, K. Folting, M. B. Maple, G. Christou

and D. N. Hendrickson, Chem. Commun., 1973 (1999).
[119] A. Lascialfari, D. Gatteschi, F. Borsa, A. Shastri, Z. H. Jang and P. Carretta, Phys. Rev. B

57, 514 (1998).
[120] A. Lascialfari, Z. H. Jang, F. Borsa, P. Carretta and D. Gatteschi, Phys. Rev. Lett. 81,

3773 (1998).
[121] W. Wernsdorfer, R. Sessoli, A. Caneschi, D. Gatteschi, A. Cornia and D. Mailly, J. Appl.

Phys. 87, 5481 (2000).
[122] W. Wernsdorfer and R. Sessoli, Science 284, 133 (1999).
[123] W. Wernsdorfer, R. Sessoli, A. Caneschi, D. Gatteschi and A. Cornia, Europhys. Lett. 50,

552 (2000).
[124] D. Loss, D. P. DiVincenzo and G. Grinstein, Phys. Rev. Lett. 69, 3232 (1992).
[125] J. von Delft and C. L. Henley, Phys. Rev. Lett. 69, 3236 (1992).
[126] A. Garg, Europhys. Lett. 22, 205 (1993).
[127] A. Garg, Phys. Rev. B 51, 15161 (1995).
[128] S. E. Barnes, J. Phys.-Condes. Matter 10, L665 (1998).
[129] R. Lu, J. L. Zhu, X. Chen and L. Chang, Eur. Phys. J. B 3, 35 (1998).
[130] A. Garg, Phys. Rev. B 60, 6705 (1999).
[131] A. Garg, Phys. Rev. Lett. 83, 4385 (1999).
[132] G. H. Kim, Phys. Rev. B 60, R3728 (1999).
[133] R. Lu, J. L. Zhu, X. B. Wang and L. Chang, Phys. Rev. B 60, 4101 (1999).
[134] E. M. Chudnovsky and X. Martinez-Hidalgo, Europhys. Lett. 50, 395 (2000).



Jonathan R. Friedman218

[135] A. Garg, Europhys. Lett. 50, 382 (2000).
[136] S. Y. Lee and S. K. Yoo, Phys. Rev. B 62, 13884 (2000).
[137] A.-L. Barra, P. Debrunner, D. Gatteschi, C. E. Schulz and R. Sessoli, Europhys. Lett. 35,

133 (1996).
[138] C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli and D. Gatteschi, Phys. Rev. Lett. 78,

4645 (1997).
[139] E. del Barco, N. Vernier, J. M. Hernandez, J. Tejada, E. M. Chudnovsky, E. Molins and

G. Bellessa, Europhys. Lett. 47, 722 (1999).
[140] G. Bellessa, N. Vernier, B. Barbara and D. Gatteschi, Phys. Rev. Lett. 83, 416 (1999).
[141] E. M. Chudnovsky, Phys. Rev. A 46, 8011 (1992).
[142] E. M. Chudnovsky and D. A. Garanin, Phys. Rev. Lett. 79, 4469 (1997).
[143] D. A. Garanin, X. M. Hidalgo and E. M. Chudnovsky, Phys. Rev. B 57, 13639 (1998).
[144] J. Q. Liang, H. J. W. Muller-Kirsten, D. K. Park and F. Zimmerschied, Phys. Rev. Lett.

81, 216 (1998).
[145] S. Y. Lee, H. J. W. Muller-Kirsten, D. K. Park and F. Zimmerschied, Phys. Rev. B 58,

5554 (1998).
[146] D. A. Garanin and E. M. Chudnovsky, Phys. Rev. B 59, 3671 (1999).
[147] S. P. Kou, J. Q. Liang, Y. B. Zhang, X. B. Wang and F. C. Pu, Phys. Rev. B 59, 6309

(1999).
[148] G. H. Kim, Phys. Rev. B 59, 11847 (1999).
[149] C. S. Park, S. K. Yoo, D. K. Park and D. H. Yoon, Phys. Rev. B 59, 13581 (1999).
[150] G. H. Kim, J. Appl. Phys. 86, 1062 (1999).
[151] G. H. Kim, Europhys. Lett. 51, 216 (2000).
[152] A. D. Kent, Y. C. Zhong, L. Bokacheva, D. Ruiz, D. N. Hendrickson and M. P. Sarachik,

Europhys. Lett. 49, 521 (2000).
[153] A. D. Kent, Y. C. Zhong, L. Bokacheva, D. Ruiz, D. N. Hendrickson and M. P. Sarachik,

J. Appl. Phys. 87, 5493 (2000).
[154] K. M. Mertes, Y. Zhong, M. P. Sarachik, Y. Paltiel, H. Shtrikman, E. Zeldov, E.

Rumberger and D. N. Hendrickson, cond-mat/0012247 (2000).
[155] L. Bokacheva, A. D. Kent and M. A. Walters, Phys. Rev. Lett. 85, 4803 (2000).
[156] I. Chiorescu, R. Giraud, A. G. M. Jansen, A. Caneschi and B. Barbara, Phys. Rev. Lett.

85, 4807 (2000).
[157] D. A. Garanin and E. M. Chudnovsky, Phys. Rev. B 6302, 4418 (2001).




