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Quantum tunneling and classical barrier reduction for a mesoscopic spin
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I show that for a large spin with uniaxial anisotropy it is, principle, impossible to distinguish classical
energy-barrier reduction due to a transverse magnetic field from an increase in the tunneling rate of excited
levels. Given a suitable definition of the quantum energy barrier, | derive an expression for the field depen-
dence of the barrier height that agrees with the classical result up to a constant of order unity. Numerical results
show that for a mesoscopic spiB{10) the barrier decreases in a series of steps, which recent experiments
may have revealedS0163-182¢08)08317-9

Recent experiments have rekindled interest in the field of Motivated by the notion that the tunneling is produced by
quantum tunneling of magnetizatidMost notable has been some transversédipolar or hyperfing field internal to the
the discovery of resonant tunneling between spin states in RIn,, crystal, some experimenit§® have attempted to pro-
system of spin-10 molecules known as Macetate or, sSim- mote tunneling in My, by applying an external transverse
ply, Mn;,. At low temperatures the magnetization in this field. However, it is well known that a transverse field will
system was found to relax significantly faster at particulanower the classical relaxation barrier; so, an increase in the
values of magnetic field that correspond to resonances bgelaxation rate in response to an applied transverse field can-
tween spin states. First observed at just a few figfiie  not immediately be attributed to an increase in tunneling. In
phenomenon was firmly established with the discovery othis paper | show that for a large spin system the increase in
multiple, regularly spaced resonanée3his phenomenon the tunnel splitting of excited levels is actually responsible
has been verified in other experiments on the samgor the classical reduction of the energy barrier and cannot,
materiaf_® and there is now some evidence for it in otherin principle, be distinguished from it. Furthermore, | show
systems ! that for moderately sized spinsS{10) the discrete level

While there have been many semiclassical treatments Gftructure becomes important and one should expect to find
tunneling in magnetic systems;'* such approaches have that the effective energy barrier decreases in steps, rather

turned out to be unnecessary for Mnwhich withS=101is  than continuously. | will compare these results with recent
easily tractable by more precise methods. The dynamics axperiments.

Mny, have been quantitatively descritféd by a simple If the field is applied along the easy)(axis, the eigen-
Hamiltonian: states of Eq(1) are|S,m), whereS is the total spin andh is
the corresponding magnetic quantum number; the eigenener-
. _ 2_ . . _
He— DS§—g,uBS~ B, (1) gies areE,= —Dm“—gugBm. It is straightforward to cal

culate at what fields levels in opposite wells cross. The states
|S,m) and|S,—m+n) (the labelS will remain implicit here-
whereD>0 characterizes the magnetocrystalline anisotropyaften become degenerate wHen
that impels the spin of the molecule to lie alofay antipar-
allel to) the z axis (thec axis of the Mn-acetate’s tetragonal
lattice) and B is the magnetic induction. The system can be
modeled as a double-well potential, as shown in Fig. 1, with N
the levels representing different eigenstateSof The sec-
ond term in Eqg.(1) has two distinct effects. A longitudinal
component of the fieldB, tilts the potential, as in Fig. 1,
raising or lowering the energies of the states, depending on "~
which well they are in, and bringing levels into resonance at m=5-1
particular values oB,. On the other hand, a transverse field
B, introduces a term into the Hamiltonian-@ugB,S,) that
does not commute witls, and therefore allows tunneling
between the otherwise unperturbed states. It has been
showr{"3°that the tunneling from excited levels near the top
of the barrier is significantly faster than for low-lying levels.

As the dynamics of My, are now understootf? the system FIG. 1. Double-well potential for spin reversal. The energy bar-
is thermally activated to some high-lying level near the toprier is due to the anisotropy and the asymmetry is produced by an
of the barrier where the tunneling rate is high; it then tunnelsapplied longitudinal field. Energy levels correspond to different
across the barrier and decays down into the other (#&l.  spin projections along the easy axis. The dynamics of thermally
1). assisted resonant tunneling are illustrated by the arrows.

tunneli
tunneling
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Dn that pair. Several experiments’ have confirmed that the
Bm-m+n=— - (2)  resonance condition depends only on the longitudinal field
9re and is apparently independent of transverse field.
It is important to note that this result is independentof A transverse component of the magnetic field breaks the

implying that all levels in the left well come into resonance rotational symmetry that Eq1) would otherwise have and
with levels in the right well at the same values of magneticthereby produces tunneling between degenerate states. While
field. Figure 1, where the field has been set such tkap,  there are various semiclassical techniques for calculating this
illustrates this multiple resonance. tunnel splitting!?~**in the case of Eq(1) it can be calcu-
This multiple resonance can be seen as arising from #ated explicitly to leading order in degenerate perturbation

hidden symmetry in the Hamiltonian and can be made manitheory. Garanit? has calculated the tunnel splitting for the
fest by completing the square of E¢l) while taking B  case of zero longitudinal fieldn(=0). His formula can be
=Bz generalized to the case of other resonances(). The tun-

nel splitting for degenerate statgm’) and|—m’) is'®

gueB)\? gugB)? 2D
— A r= 7
H==D| S+ 55 ) +D( 2D ) ™ [(2m - 1)I?
2 n\2 (s+m’ +n/2)1(s+m’'—n/2)! [|by|2™
=-D|S,~=| +D| =/, —x
2 2 (s—m’'—=n/2)!(s—m'+n/2)! | 2D

(4)
where the last step is an application of E2). The statem _ . . . .
then has energypEm= _ Dp(r:n_ ni2)2+ 5122/4, Whicﬁ i>s This equation can be used to obtain the classical reduction

of the energy barrier by a transverse magnetic field. When
?1e field is purely transverse, the energy bardes given by

he well-known resultU=Uqy(1—|b,|/b,)?, where U,
=DS? is the height of the barrier in zero field arf
=2DS is the critical field at which the barrier disappears.
There is no analytic expression for the energy barrier when

clearly invariant under the transformatiom— —m-+n.

It is useful to relabel the states to reflect the degenerac
more clearly. If one definem’=m—n/2, then for a given
value of n the degenerate states gm)=|m’+n/2) and
| -m+n)=|—m’+n/2). These can be relabeled, respec-

tively, as|m’) and|—m’), which are now eigenstates of the ) . o
e . - . the field has components in both thandz directions. How-
operators, =S,~ n/2. With this labeling, each degenerate ever, for|b,/b.|<1 (and arbitraryb,), the barrier is given

pair comprises states with labels that differ only by a sign,
making it clear that they are degenerate. The new laiel
can be thought of as a counting number, indicating how far

2 2 2
down the state is from the top of the barrisee Fig. L — _ E _ & _ E &
! - ; . U=Ug| |1 1 +0 .
It is not prima facie clear that the resonance condition, be be be be
Eq. (2), would be unaltered if there is a component of the 6)

field perpendicular to the easy axts,=gugB,. When the
system is tuned to resonannge nondegenerate perturbation
theory yields the second-order correction to the energy o
m’) to be

This equation contains a term linearhp, which leads to an
interesting paradox since the lowest-order correction to the
nergy of any state, E@3), is quadratic inb, .

In order to resolve this seeming contradiction we must

2 2 2 carefully approach the question of the meaning of an energy
— bi[s(s+1)+ m2 (n/2)7] 3) barrier in the quantum picture. Naly, one can define it as
2D(4m’“—1) ’ the energy difference between the lowest-energy staie (
hich is i . d h ; o, =S—n/2) and the highest-energy state’'(=0). But this
VI-\;eIr?ce Ifwé)ms/g'zggtthl;? a?é dteee::rr:asteoir?tittleaznn—eirtuTbé de definition leads to the paradox, as the energies of these states

’ 9 P "’\lfc’aery asbi. One arrives at a better definition of the energy

’ ey - .
i(|sn:u>rnin dd anNQ t(;etrEZ{ntr?:g deenneorr?;[i?] ;\tlgregfthEea)p?Srtggbrit'onbarrier by recognizing that the transverse field produces tun-
: neling in the levels and that, according to E4), the tun-

b1 e .
m;irr‘ mmasl': kz)e LTEQQSIC?:ZS trgatefiizqar:;? cﬁ)(;sertsu;t:)etlt:gn eling is orders of magnitude faster for the highest levels
y : prop an for the lower ones. One can then define the energy

ﬁgtﬁef?érzcgglgdg titgr? é?fﬁﬁﬂ;ﬁ;ngl?ig?m fo; ttt]éfoglax bUtbarrier as the energy difference between the lowest level and
piitlinge ' a level where the tunneling occurs “sufficiently fast.” This

Sg?:h%;ﬁf#'?ﬁggrm tig? din:r?;ﬁgrrrﬁﬁurﬁg]etg;ﬁgtz)?r(rjgsr;i%definition of the energy barrier corresponds to the classical
b yy P fisult in the large-spin limit, as will be demonstrated below.

that is also invariant gndenn ——m’. Thus, the resonant That is, the term linear iib, is obtained.

condition, Eq.(2), remains unchanged to at least fourth order In the limit of large spin G—n/2>m’>1), Eq. (4) can
in perturbation theory. This apparent symmetry is not exact'be simplified to T
numerical results show that E¢R) breaks down when the

tunnel splitting becomes large. One may conjecture that the , ,
resonant condition for a particular pair of levels holds up to A _2Dbm <|bx|e2V82—n2/4) o

the order of perturbation theory at which tunneling arises for m’ T 8Dm’? '

E® =

m
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where  Stirling’s approximation and the identity 1.0 g L
(1+1/x)* ——— e have been used. The level. becomes - (@) tunnel-splitting criterion
X— 0 [ a A ./Dm’
the top of the barrier when the tunnel splitting is on the order o8 0.1
of Dm., the energy separation between neighboring levels, I oo, ]
i.e., whenA ,, /[Dm{~O[1]. The field at which this happens —p ** [ g
is then S - ]
0.40 [— -
2 2 2
8DmM; w Lame 8DmM;
|bx|=2—(—0[1]) , 0.20 - -
e?\/s?—n?/4 | 2 ey €2\SP—n%4 i
© o L
since the term in the brackets rapidly approaches inas L
gets large. This indicates that the precise criterion used fora g, [ (b) e on ]
level to be tunneling “sufficiently fast” is irrelevant, as i —*—0.001
should be the case in the classical limit. i
The definition of the barrier as the energy difference be- _o %€ [ ]
tween the lowest statES) and this critical tunneling state 35 [ 1
Im¢) gives 0.40 — N
2/Q2 2 L
U=D(S2—Sn)—D(m, —n2/4)— bX(S—nzm) 020 1~ 7
8Dm,
A B
where the last term is the second-order correction to the en- 00 0 0.2 0%4 0.6 0.8 1
ergy of statelm/), Eq. (3), again in the limitS—n/2>m’ b,/b,
>1. (The correction to the energy of sta® is negligible)
Using Eq.(6) to eliminatemé and Eq.(2) to eliminaten, one FIG. 2. Calculated barrier reduction by a transverse fielddpr
obtains S=100 and(b) S=10. The thin lines are the classical result while

the points are the results of numerical diagonalization of the Hamil-
tonian, defining the top of the energy barrier to be the level for
which the tunnel splitting is comparable to the spacing between
levels, as described in the text.

b\ 2[by
A N
-0 %

Vi-lg] (52
1- b_c g‘f’g .
(7)

This reproduces the classical result, Eg), except for the changing the splitting criterion for the critical level by two
factor of (€%/8+1/e?)=1.06 in the second term within orders of magnitude creates rather small deviations that are
brackets. The discrepancy can be attributed to the fact thamost apparent at large fields.
Eq. (4), a perturbative result, is valid wheh,|<Dm?; but What happens to this picture when the magnitude of the
in the above discussion it is employed fdr,|~Dm?, ex-  spin is not very large so that the levels do not form a quasi-
actly where it begins to break down. This result establishesontinuum? The analytical result derived above breaks down
that for a macroscopically large spin the energy-barrier rein this case, but the numerical calculations are still valid.
duction by a transverse field is achieved via tunneling fromFigure Zb) shows the result fo§=10 (i.e., Mny,). The bar-
the excited states. In a certain trivial sense, then, the obvider no longer reduces smoothly with transverse field. Instead
ously classical phenomenon of barrier reduction can also b#here is a series of jumps and plateaus. This is easy to inter-
viewed as a realization of macroscopic quantum tunnelingpret within the picture presented above: as the transverse
There have been some experimental reports that a transverield is raised, the “fast-tunneling” level abruptly changes
field promotes tunneling in Mp.>”° With one exception to  from one level to the next lowest when the selected criterion
be discussed below, these claims, while true, ironically esis reached for the lower level. It should also be noted that
tablish nothing more than that the field suppresses the clafere the result is more susceptible to the particular criterion
sical energy barrier. one chooses for the critical tunnel splitting and the sharpness
The above model of barrier reduction can also be simuof the steps will depend on the dynamics. Unlike in the semi-
lated numerically by diagonalizing the Hamiltonian and classical limit, forS~ 10 the detailed dynamics of the relax-
again defining the top of the barrier to be the state where thation process are important in determining the effective bar-
tunnel splitting is on the order of the spacing between levelstier and what constitutes “sufficiently fast” tunneling.
The results of such a simulation f&=100 andb,=0 are  Assuming, for example, that thermally induced transitions
shown in Fig. 2a), where the critical tunneling criterion between levels are dipole selectednf=*1), then the
Amé/Dmé was taken to be 0.1 or 0.001, as indicat€thk-  critical level m_ is the lowest level for which its tunneling

ing A,y/Dm.=1 is problematic since the tunnel splitting rate is fgster/tharT th_e rate of thermally populating the level
c above it, m;—1; ie., A>Ty w_o1~on exd(Ey
[ C C C

becomes so large that it becomes difficult to identify a par- ] o
ticular eigenstate with am’ value) The solid curve is the —Em-0/kgT], wherewy, is the characteristic attempt fre-
classical result; the agreement is quite good. Notice thafjuency for that level. It is beyond the scope of this work to
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AR R R such experimental parameters as temperature. That is, the
barrier ceases to have intrinsic significance and retains only

-2
00 :g:‘f resonance E empirical meaning. In both the low-spin and high-spin limits,
— —-classical however, one effect is clearly going to appear: At the lowest
— temperatures, tunneling from the ground state is the domi-
DR nant process, the system no longer needs to reach any excited
s levels, and so effectively there is no barrier. This is the so-
= - called quantum rigime predicted from semiclassical analyses

E for large spins-

One recent experimehbn Mn,, has studied the relax-
ation rate as a function of transverse field in the vicinity of a
resonance. The data are reproduced in Fig. 3, where the re-
laxation rate at 2.7 K near the=1 resonance is plotted as a
function of transverse field on a semilogarithmic scale. The
relaxation rate(and hence barrier heighais a function of

transverse field seems to roughly follow the classical expec-

acetate as a function of transverse field on a semilogarithmi ttation, shown by the straight dashed ligghere the slope
garithmic ploL " jetermined without any fitting pa amefgr8Betw

for n=1 (from Ref. 7. Data both on and off resonance are shown.Was etermin wi .u y Tt g par r_ etween

The dashed line is the expected classical barrier reduction for thw2 and~'3.5 kOe a slight plateau !n the relaxation rate was

off-resonance data. A slight plateau can be seen in the data betweg(?lund' This plateau also appeared in another set of data taken

2 and 3.5 kOe, which may correspond to one of the plateaus in Figit @ different temperature, indicating that it is not spurious.
2(b). his subtle deviation from classical barrier reduction may be

due to the discrete level structure of tids- 10 system. Fur-

. ) ) ther experimental work may uncover more plateaus and con-
present a detailed dynamical theory of the relaxation thafiy, the semiquantitative prediction of Fig(K.

would predict the precise barrier dependencépfor Mn,»

or related systems. Recent wbfk°has explored the relax- | am indebted to Eugene Chudnovsky and Myriam Sa-
ation dynamics of Mp, with tunneling. What can be said rachik for many useful and stimulating discussions. Partial
here, without detailed knowledge of the dynamics, is that insupport for this work was provided by the Air Force Office
the low-spin limit the effective barrier should depend onof Scientific Research under Grant No. F49620-92-J-0190.
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FIG. 3. Relaxation rate at 2.7 K of a single crystal of Mn
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