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Quantum tunneling and classical barrier reduction for a mesoscopic spin
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~Received 12 January 1998!

I show that for a large spin with uniaxial anisotropy it is,in principle, impossible to distinguish classical
energy-barrier reduction due to a transverse magnetic field from an increase in the tunneling rate of excited
levels. Given a suitable definition of the quantum energy barrier, I derive an expression for the field depen-
dence of the barrier height that agrees with the classical result up to a constant of order unity. Numerical results
show that for a mesoscopic spin (S;10) the barrier decreases in a series of steps, which recent experiments
may have revealed.@S0163-1829~98!08317-9#
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Recent experiments have rekindled interest in the field
quantum tunneling of magnetization.1 Most notable has bee
the discovery of resonant tunneling between spin states
system of spin-10 molecules known as Mn12 acetate or, sim-
ply, Mn12. At low temperatures the magnetization in th
system was found to relax significantly faster at particu
values of magnetic field that correspond to resonances
tween spin states. First observed at just a few fields,2,3 the
phenomenon was firmly established with the discovery
multiple, regularly spaced resonances.4 This phenomenon
has been verified in other experiments on the sa
material5–9 and there is now some evidence for it in oth
systems.10,11

While there have been many semiclassical treatment
tunneling in magnetic systems,12–14 such approaches hav
turned out to be unnecessary for Mn12, which with S510 is
easily tractable by more precise methods. The dynamic
Mn12 have been quantitatively described4,5,8 by a simple
Hamiltonian:

H52DSz
22gmBS•B, ~1!

whereD.0 characterizes the magnetocrystalline anisotro
that impels the spin of the molecule to lie along~or antipar-
allel to! thez axis~thec axis of the Mn12-acetate’s tetragona
lattice! andB is the magnetic induction. The system can
modeled as a double-well potential, as shown in Fig. 1, w
the levels representing different eigenstates ofSz . The sec-
ond term in Eq.~1! has two distinct effects. A longitudina
component of the fieldBz tilts the potential, as in Fig. 1
raising or lowering the energies of the states, depending
which well they are in, and bringing levels into resonance
particular values ofBz . On the other hand, a transverse fie
Bx introduces a term into the Hamiltonian (2gmBBxSx) that
does not commute withSz and therefore allows tunnelin
between the otherwise unperturbed states. It has b
shown7,8,15that the tunneling from excited levels near the t
of the barrier is significantly faster than for low-lying level
As the dynamics of Mn12 are now understood,7,8 the system
is thermally activated to some high-lying level near the t
of the barrier where the tunneling rate is high; it then tunn
across the barrier and decays down into the other well~Fig.
1!.
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Motivated by the notion that the tunneling is produced
some transverse~dipolar or hyperfine! field internal to the
Mn12 crystal, some experiments5,7–9 have attempted to pro
mote tunneling in Mn12 by applying an external transvers
field. However, it is well known that a transverse field w
lower the classical relaxation barrier; so, an increase in
relaxation rate in response to an applied transverse field
not immediately be attributed to an increase in tunneling.
this paper I show that for a large spin system the increas
the tunnel splitting of excited levels is actually responsib
for the classical reduction of the energy barrier and cann
in principle, be distinguished from it. Furthermore, I sho
that for moderately sized spins (S;10) the discrete leve
structure becomes important and one should expect to
that the effective energy barrier decreases in steps, ra
than continuously. I will compare these results with rece
experiments.

If the field is applied along the easy (z) axis, the eigen-
states of Eq.~1! areuS,m&, whereS is the total spin andm is
the corresponding magnetic quantum number; the eigene
gies areEm52Dm22gmBBm. It is straightforward to cal-
culate at what fields levels in opposite wells cross. The sta
uS,m& anduS,2m1n& ~the labelS will remain implicit here-
after! become degenerate when4

FIG. 1. Double-well potential for spin reversal. The energy b
rier is due to the anisotropy and the asymmetry is produced by
applied longitudinal field. Energy levels correspond to differe
spin projections along the easy axis. The dynamics of therm
assisted resonant tunneling are illustrated by the arrows.
10 291 © 1998 The American Physical Society
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Bm,2m1n52
Dn

gmB
. ~2!

It is important to note that this result is independent ofm,
implying that all levels in the left well come into resonan
with levels in the right well at the same values of magne
field. Figure 1, where the field has been set such thatn52,
illustrates this multiple resonance.

This multiple resonance can be seen as arising from
hidden symmetry in the Hamiltonian and can be made m
fest by completing the square of Eq.~1! while taking B
5Bz:

H52DS Sz1
gmBB

2D D 2

1DS gmBB

2D D 2

52DS Sz2
n

2D 2

1DS n

2D 2

,

where the last step is an application of Eq.~2!. The stateum&
then has energyEm52D(m2n/2)21Dn2/4, which is
clearly invariant under the transformationm→2m1n.

It is useful to relabel the states to reflect the degener
more clearly. If one definesm85m2n/2, then for a given
value of n the degenerate states areum&5um81n/2& and
u2m1n&5u2m81n/2&. These can be relabeled, respe
tively, asum8& andu2m8&, which are now eigenstates of th
operatorSz85Sz2n/2. With this labeling, each degenera
pair comprises states with labels that differ only by a si
making it clear that they are degenerate. The new labelm8
can be thought of as a counting number, indicating how
down the state is from the top of the barrier~see Fig. 1!.

It is not prima facie clear that the resonance conditio
Eq. ~2!, would be unaltered if there is a component of t
field perpendicular to the easy axis,bx5gmBBx . When the
system is tuned to resonancen, nondegenerate perturbatio
theory yields the second-order correction to the energy
um8& to be

Em8
~2!

52
bx

2@s~s11!1m822~n/2!2#

2D~4m8221!
, ~3!

which is invariant under the transformationm8→2m8.
Hence, two states that are degenerate in the unperturbed
~um8& and u2m8&! remain degenerate when the perturbat
is turned on. Note that the denominator of Eq.~3! is zero
when m856 1

2 . This indicates that degenerate perturbat
theory must be invoked. The proper treatment does not
to a correction in the resonant condition for this pair b
rather to a calculation of the tunnel splitting~see below!. A
similar calculation of the energy correction to fourth order
perturbation theory yields a rather cumbersome expres
that is also invariant underm8→2m8. Thus, the resonan
condition, Eq.~2!, remains unchanged to at least fourth ord
in perturbation theory. This apparent symmetry is not exa
numerical results show that Eq.~2! breaks down when the
tunnel splitting becomes large. One may conjecture that
resonant condition for a particular pair of levels holds up
the order of perturbation theory at which tunneling arises
c
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that pair. Several experiments5,7,9 have confirmed that the
resonance condition depends only on the longitudinal fi
and is apparently independent of transverse field.

A transverse component of the magnetic field breaks
rotational symmetry that Eq.~1! would otherwise have and
thereby produces tunneling between degenerate states. W
there are various semiclassical techniques for calculating
tunnel splitting,12–14 in the case of Eq.~1! it can be calcu-
lated explicitly to leading order in degenerate perturbat
theory. Garanin15 has calculated the tunnel splitting for th
case of zero longitudinal field (n50). His formula can be
generalized to the case of other resonances (n.0). The tun-
nel splitting for degenerate statesum8& and u2m8& is16

Dm85
2D

@~2m821!! #2

3A~s1m81n/2!! ~s1m82n/2!!

~s2m82n/2!! ~s2m81n/2!! S ubxu
2D D 2m8

.

~4!

This equation can be used to obtain the classical reduc
of the energy barrier by a transverse magnetic field. Wh
the field is purely transverse, the energy barrierU is given by
the well-known result U5U0(12ubxu/bc)

2, where U0
5DS2 is the height of the barrier in zero field andbc
52DS is the critical field at which the barrier disappear
There is no analytic expression for the energy barrier wh
the field has components in both thex andz directions. How-
ever, for ubx /bcu!1 ~and arbitrarybz!, the barrier is given
by

U5U0F S 12
bz

bc
D 2

22Ubx

bc
UA12S bz

bc
D 2G1OF S bx

bc
D 2G .

~5!

This equation contains a term linear inbx , which leads to an
interesting paradox since the lowest-order correction to
energy of any state, Eq.~3!, is quadratic inbx .

In order to resolve this seeming contradiction we m
carefully approach the question of the meaning of an ene
barrier in the quantum picture. Naı¨vely, one can define it as
the energy difference between the lowest-energy statem8
5S2n/2) and the highest-energy state (m850). But this
definition leads to the paradox, as the energies of these s
vary asbx

2. One arrives at a better definition of the ener
barrier by recognizing that the transverse field produces
neling in the levels and that, according to Eq.~4!, the tun-
neling is orders of magnitude faster for the highest lev
than for the lower ones. One can then define the ene
barrier as the energy difference between the lowest level
a level where the tunneling occurs ‘‘sufficiently fast.’’ Th
definition of the energy barrier corresponds to the class
result in the large-spin limit, as will be demonstrated belo
That is, the term linear inbx is obtained.

In the limit of large spin (S2n/2@m8@1), Eq. ~4! can
be simplified to

Dm85
2Dm8

p S ubxue2AS22n2/4

8Dm82 D 2m8

,
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where Stirling’s approximation and the identi
(111/x)x ——→

x→`
e have been used. The levelmc8 becomes

the top of the barrier when the tunnel splitting is on the or
of Dmc8 , the energy separation between neighboring lev
i.e., whenDm

c8
/Dmc8'O@1#. The field at which this happen

is then

ubxu5
8Dmc8

2

e2AS22n2/4
S p

2
O@1# D 1/2mc8

——→
m8@1

8Dmc8
2

e2AS22n2/4
,

~6!

since the term in the brackets rapidly approaches 1 asmc8
gets large. This indicates that the precise criterion used f
level to be tunneling ‘‘sufficiently fast’’ is irrelevant, a
should be the case in the classical limit.

The definition of the barrier as the energy difference
tween the lowest stateuS& and this critical tunneling state
umc8& gives

U5D~S22Sn!2D~mc8
2
2n2/4!2

bx
2~S22n2/4!

8Dmc8
2 ,

where the last term is the second-order correction to the
ergy of stateumc8&, Eq. ~3!, again in the limitS2n/2@m8
@1. ~The correction to the energy of stateuS& is negligible.!
Using Eq.~6! to eliminatemc8 and Eq.~2! to eliminaten, one
obtains

U5DS2F S 12
bz

bc
D 2

2
2ubxu

bc
A12S bz

bc
D 2 S e2

8
1

1

e2D G .
~7!

This reproduces the classical result, Eq.~5!, except for the
factor of (e2/811/e2)51.06 in the second term within
brackets. The discrepancy can be attributed to the fact
Eq. ~4!, a perturbative result, is valid whenubxu!Dm2; but
in the above discussion it is employed forubxu'Dm2, ex-
actly where it begins to break down. This result establis
that for a macroscopically large spin the energy-barrier
duction by a transverse field is achieved via tunneling fr
the excited states. In a certain trivial sense, then, the o
ously classical phenomenon of barrier reduction can also
viewed as a realization of macroscopic quantum tunnel
There have been some experimental reports that a trans
field promotes tunneling in Mn12.

5,7,9 With one exception to
be discussed below, these claims, while true, ironically
tablish nothing more than that the field suppresses the c
sical energy barrier.

The above model of barrier reduction can also be sim
lated numerically by diagonalizing the Hamiltonian a
again defining the top of the barrier to be the state where
tunnel splitting is on the order of the spacing between lev
The results of such a simulation forS5100 andbz50 are
shown in Fig. 2~a!, where the critical tunneling criterion
Dm

c8
/Dmc8 was taken to be 0.1 or 0.001, as indicated.~Tak-

ing Dm
c8
/Dmc851 is problematic since the tunnel splittin

becomes so large that it becomes difficult to identify a p
ticular eigenstate with anm8 value.! The solid curve is the
classical result; the agreement is quite good. Notice
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changing the splitting criterion for the critical level by tw
orders of magnitude creates rather small deviations that
most apparent at large fields.

What happens to this picture when the magnitude of
spin is not very large so that the levels do not form a qua
continuum? The analytical result derived above breaks do
in this case, but the numerical calculations are still va
Figure 2~b! shows the result forS510 ~i.e., Mn12!. The bar-
rier no longer reduces smoothly with transverse field. Inst
there is a series of jumps and plateaus. This is easy to in
pret within the picture presented above: as the transv
field is raised, the ‘‘fast-tunneling’’ level abruptly change
from one level to the next lowest when the selected criter
is reached for the lower level. It should also be noted t
here the result is more susceptible to the particular criter
one chooses for the critical tunnel splitting and the sharpn
of the steps will depend on the dynamics. Unlike in the se
classical limit, forS;10 the detailed dynamics of the relax
ation process are important in determining the effective b
rier and what constitutes ‘‘sufficiently fast’’ tunneling
Assuming, for example, that thermally induced transitio
between levels are dipole selected (Dm561), then the
critical level mc8 is the lowest level for which its tunneling
rate is faster than the rate of thermally populating the le
above it, mc821; i.e., Dm

c8
.Gm

c8→m
c821'vm8 exp@(Em

c8

2Em
c821)/kBT#, wherevm8 is the characteristic attempt fre

quency for that level. It is beyond the scope of this work

FIG. 2. Calculated barrier reduction by a transverse field for~a!
S5100 and~b! S510. The thin lines are the classical result whi
the points are the results of numerical diagonalization of the Ham
tonian, defining the top of the energy barrier to be the level
which the tunnel splitting is comparable to the spacing betw
levels, as described in the text.
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present a detailed dynamical theory of the relaxation t
would predict the precise barrier dependence onbx for Mn12
or related systems. Recent work17–20 has explored the relax
ation dynamics of Mn12 with tunneling. What can be sai
here, without detailed knowledge of the dynamics, is tha
the low-spin limit the effective barrier should depend

*Electronic address: jrf@onnes.physics.sunysb.edu. Much of
work was done at the Physics Department of the City College
New York, New York, NY 10031.
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called quantum regime predicted from semiclassical analy
for large spins.12–14
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